A Proteomics Dive into Yeast-Dependent Colloidal Haze

Brewing Summit 2022 Keith Lacy Omega Yeast Labs

UNITED WE BREW

Keith Lacy

- Working with Omega since 2018
 - Propagation Technician 2018-2019
 - Assistant Production Manager 2019-2020
 - Research & Development Technician 2020- onward
- Graduate of the University of Illinois at Chicago

Talk Outline

- Introduction to Haze
- Haze Positive Yeast
- Proteomics Experiments
- Conclusions and Next Steps

What kind of haze are we talking about?

NEIPA levels

Sample	Turbidity Measurement
Drinking water	0.05-1.5 NTU
Lager	5-20 NTU
Porter	20-200 NTU
Hazy IPA	200-1000 NTU
Orange juice	300-900 NTU
Milk	>4000 NTU

Development of an Assay to Study Yeast-Dependent Haze

Wort: All barley malt (2-row) for target 15°P

Pitch Rate: 10 million/ml

Temperature: 70°F

Fermentation End Point: 14 days

Dry Hop Amount: 2 lb/bbl (8g/L)

Dry Hop Addition:

- Control (no dry hop)
- Knockout (in fermentor pre-pitch)
- Day 1
- Day 2
- Day 3
- Day 4
- Day 7
- DDH (½ Day 4, ½ Day 7)

Dry Hop Timing and Yeast Choice -Dramatically Impacts Degree of Haze

Haze Positive OYL-011 British V, London III Haze Neutral OYL-004 West Coast Ale I, Chico

Pictures at 14 days from left to right:

Control (no dry hop			
Day	0 "Knockout"		
Day	1		
Day	2		
Day	3		
Day	4		
Day	7		
DDF	l (Day 1 and 7)		

Dry Hop Timing

Dry Hop Timing

Yeast-Dependent Haze – "Haze Positive" strains

What makes a strain "Haze Positive" or "Haze Neutral"?

Potential Mechanisms:

- Adsorption of polyphenols/proteins by yeast cell wall
- Yeast secreted protein (or secreted proteases)
- Cell wall polysaccharides (Mannan, ß-glucan)
- Impact of yeast on pH and non-covalent interactions

Haze is Not Correlated to Flocculation

Haze is Correlated to Total Polyphenols

What proteins are changing in the haze samples?

- Are certain yeast proteins correlated to hazy or non-hazy samples?
- Proteins specific to haze positive or haze neutral yeast?

Haze positive yeast

Haze neutral yeast

SDS page gels show no difference associated with haze

HASTER BREWERD ESTE TOROGRATION OF THE AMENULO D-hordein (**g**, 93.9 kDa), C-hordeins (**h**, 70.5; **i**, 63.7; and **j**, 55.6 kDa), B-hordein (**k**, 47.8 kDa) partly obscuring γ1-hordein (**l**, 45.0 kDa), γ2-hordein (**m**, 40.0 kDa), γ3-hordein (**n**, 38.0 kDa)

Centrifuged haze shows similar proteins found in beer

- 1 30ul beer
- 2 centrifuged haze from 500 ul
- 3 centrifuged haze from 500 ul + 8M urea

Proteomics Experiment

- 4 yeast strains
 - Haze positive: OYL-011, OYL-061
 - Haze neutral: OYL-004, OYL-071
- Two fermentation conditions
 - Control no dry hop
 - Day 7 dry hop
- Samples were centrifuged at 3000 rpms and transferred 3 times to remove yeast cells
- BSA was used to determine the total protein and samples were digested for LC/MS
- Each of the 8 samples were run in biological triplicate

Easy nLC 1200 system and an Eclipse Tribrid mass spectrometer

How Proteomics Works

- Total protein is extracted and quantified
- Proteins are digested into small peptides
- Peptides are separated by liquid chromatography
- Peptides are ionizes and MS determines a mass/charge ratio of each peptide
- Peptides ions are fragmented and further analyzed by tandem MS
- This information is used to identify the peptide against a database of known peptides
- Our results were compared to the yeast and barley peptide databases
- Protein abundance is determined by the number of unique peptides and total peptides per protein

Coon et al. Biotechniques. 2018

Quality data! PCA plots show strong clustering of sample replicates

- 1. Sample replicates are consistent
- 2. Strain proteomes are distinct
- 3. Clear difference between control and dry hop samples

What types of proteins were identified across samples?

Surprising number of yeast proteins in the samples

Total number of proteins in each sample set

	OYL-011 positive	OYL-061 positive	OYL-004 neutral	OYL-071 neutral
Control	509	481	551	483
Day 7	524	391	527	439

Identifying enriched and depleted proteins in haze positive (OYL-011) vs haze neutral yeast (OYL-004)

Ratio of OYL-011 : OYL-004

Ratio of OYL-011 : OYL-004

p value <0.01

Specific Candidates Previously Associated with Haze in Beer Samples

Cell wall mannoproteins or secreted mannoproteins

Uth1 – cell wall protein, deletion results in thickening of cell wall

Sim1 – cell wall protein

Hpf1 – secreted protein, haze protective factor, overexpression reduces turbidity in wine

Cwp1 –cell wall protein, deletion results in thinning of cell wall

Cis3 – cell wall protein

Css1 - secreted protein, overexpression reduces turbidity in white wine

ESTE BRENERS ESTE 1887 TOSOCATION OF THE AMENING

Interesting Patterns with Barley Proteins

■B1-hordein ■B3-hordein ■Gamma-1-hordein ■Gamma-3-hordein ■LTP1

B-hordeins

- Are these covalently bound by hop polyphenols and no longer detectable in dry hopped samples?
- Absent in all dry hopped samples, not specific to haze

Gamma-hordeins/LTP1

 Other barley proteins appear to be unaffected by dry hop

Likely not one specific "haze" factor

- Haze positive strains are unrelated and may have distinct mechanisms of generating haze
 - English Ale, Kolsch, Kveik, American Ale, Hefeweizen
- Our proteomics experiments did not identify yeast proteins that were specifically enriched in haze positive, day 7 dry hopped samples
- Similar to the balance required for protein polyphenol interactions, subtle shifts in protein amounts/compositions may change the stability of haze generated

Siebert *et al*. 1996 Kahle et al. 2020

Limitations with a Proteomics Approach

- Sample quality
 - Beer samples are heavily oxidized, modified and degraded. These will not be seen as readily with proteomics.
- Insoluble proteins
 - Difficult to analyze by proteomics
- Not just protein
 - Missing information for other non-proteinaceous haze components (ie. carbohydrates, lipids, polyphenols)
- Proteome variation in brewing strains
 - Will not recognize mutated peptide sequence

Thank you!!

Acknowledgments:

Chris Bolcato (ThermoFisher) Laura Burns Lance Shaner

Contact me:

Keith Lacy keith@omegayeast.com

The Omega Yeast Crew

Resources

- 1. Kahle EM. Zarnkow M. Jacob F. Beer Turbidity Part 1: A Review of Factors and Solutions. JASBC 2021.
- 2. ASBC Methods of Analysis. Beer 27, Beer 35, Yeast 11.
- 3. Kahle EM, Zarnkow M and Jacob F. JASBC 2020.
- 4. Burns LC, Lacy K. Shaner L. Investigations into Yeast-Dependent Colloidal Haze. Master Brewers Conference 2021.
- 5. Burns LC, Preiss R. Dialing in Haze: Yeast Choice and Dry Hop Timing. CBC 2022.

