### Effects of Barley Variety and Growing Locations on Beer Sensory Attributes

Yueshu Li, Andrew Nguyen, Bryce Lodge, Aaron Onio, Sherwin Santiano, Peter Watts



2022 Brewing Summit, Providence, Rhode Island, USA

**UNITED WE BREW** 

### Introduction

- Beer's sensory characteristics are one of the critical quality attributes for beer drinker's acceptance and satisfaction.
- To date, the "flavour origins of beer" are not well defined.
- Our understanding of how barley/malt directly contributes to beer flavours is limited, though we may agree with the statement, "malt is the soul of beer".
- Realizing barley's impact on a beer's sensory attribute is very important for the malting and brewing industry in order to accept new varieties and harness their quality potential
- This study examined the effects of barley variety (G), growing location (E), and their interactions (G x E) on flavour attributes of the all-malt beers brewed with AAC Connect, CDC Bow, CDC Copeland and Harrington barley malts.
- Some of the underlying organic compounds (volatile and non-volatile) in wort and beer, which may be associated with beer sensory attributes, were assessed.
- Additionally, the associations between beer sensory attributes and the quality parameters of barley, malt, and beer, were assessed.



### **Barley Material**

- AAC Connect, CDC Bow, CDC Copeland and Harrington barley were grown at 3 locations: Brandon, MB, Lacombe, AB, and Saskatoon, SK, Canada in 2018 & 2019 crop years
- **Lacombe** is located at black grey soil zone with 533 mm precipitation/yr.
- **Saskatoon** is located at brown soil zone with 465 mm precipitation/yr.
- **Brandon** is located at black soil zone with 610mm precipitation/yr.



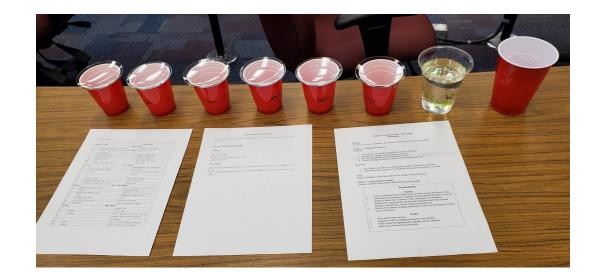
Barley plots prior to harvest at Brandon, AB



### **Malting and Brewing**

- Malting trials (by variety, location and crop year) were conducted at CMBTC using a 5kgpilot malting system, all under identical processing conditions
- All malt beers were brewed for each malt sample using a nano-brewing system at CMBTC using identical brewing procedures.
- Magnum hops (Hops Direct, BC) were used for hopping
- Fermentation was carried out at 19°C for 7 days using American Ale yeast (Wyeast, OR) with a pitch rate of 1.25 x 10<sup>6</sup> cells/ml/°P








### **Sensory Evaluation**

- Descriptive sensory analysis of the beer samples was performed by trained panelists at the CMBTC
- Panelists were trained to detect the sensory components selected for this study at varying concentrations
- Beers were poured from 20L kegs into pitchers and placed in an ice bath until ready to be poured into sample cups. The beer samples were evaluated at approximately 12°C.







### **Physical and Chemical Analysis**

#### **Non-Volatile Compounds**

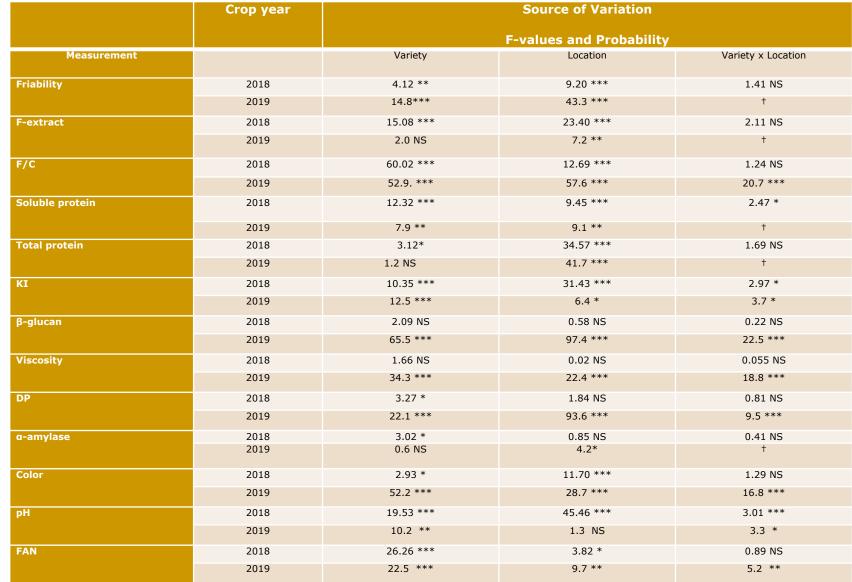
Water-soluble extraction and untargeted analysis by:

- Liquid Chromatography-Quadrupole Time of Flight Mass Spectrometry (LC-QTOF-MS (Agilent 1260/ 6538)). Library with 250,000 compounds.
- Nuclear Magnetic Resonance (NMR (AVANCE III 600 MHz). Library with 1400 compounds.

#### Volatile Organic Compounds (VOCs) Analysis

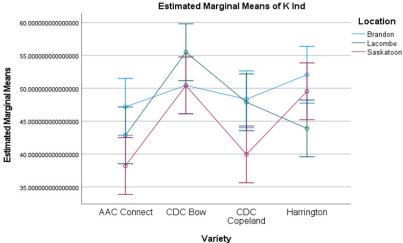
- Extraction using a Likens Nickerson Solvent Extraction
- Gas Chromatography-Mass Spectrometry (GC-MS)

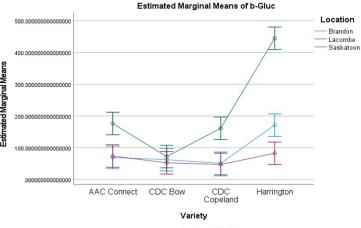





### Effects of G, E & G x E interaction on Malt

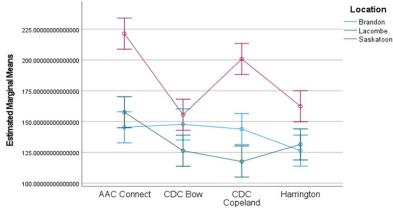
All **13** malt quality parameters tested showed significant effects of G & E;


**9** out of the **13** parameters showed significant G x E interaction; friability, extract, total protein, and alpha amylase showed no significant G x E interaction;


In addition, crop year variations were recorded.





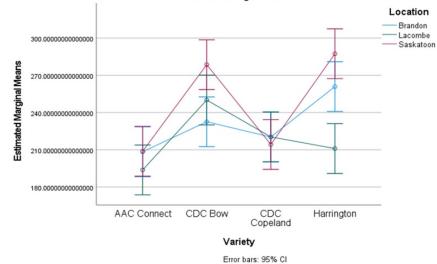

### **Effects of G, E & G x E Interaction on Malt**















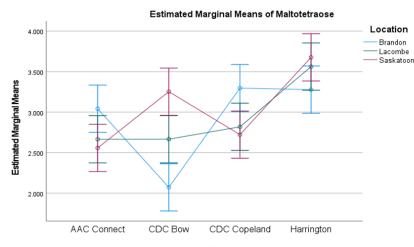



Estimated Marginal Means of FAN

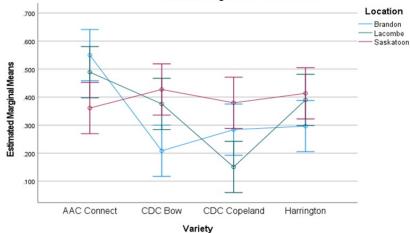




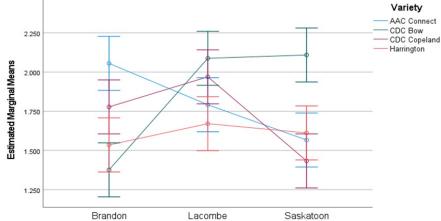
### Effects of G, E & G x E Interaction on Beer


|                  |      |            | Source of Variatio<br>alues and Probab |                       |                      |                      | ariety<br>an, n=6)  |                    |                     | Location<br>(Mean, n=8) |                    |
|------------------|------|------------|----------------------------------------|-----------------------|----------------------|----------------------|---------------------|--------------------|---------------------|-------------------------|--------------------|
| Measurement      |      | Variety    | Location                               | Variety x<br>Location | CDC Bow              | AAC Connect          | CDC Copeland        | Harrington         | Brandon             | Lacombe                 | Saskatoon          |
| Specific gravity | 2018 | 170.16 *** | 171.69 ***                             | 42.84 ***             | 1.0035 <sup>d</sup>  | 1.0047 <sup>b</sup>  | 1.0043 <sup>c</sup> | 1.0052ª            | 1.0047ª             | 1.0037 <sup>b</sup>     | 1.0048ª            |
|                  | 2019 | 7.7 **     | 8.4 **                                 | +                     | 1.0043 <sup>ab</sup> | 1.0041 <sup>ab</sup> | 1.0032 <sup>b</sup> | 1.0051ª            | 1.0034 <sup>b</sup> | 1.0046ª                 | 1.0046ª            |
| AE (°P)          | 2018 | 168.52 *** | 178.61 ***                             | 43.62 ***             | 0.90 <sup>d</sup>    | 1.21 <sup>b</sup>    | 1.10 <sup>c</sup>   | 1.34ª              | 1.22ª               | 0.95 <sup>b</sup>       | 1.24ª              |
|                  | 2019 | 8.0 **     | 8.7 **                                 | +                     | 1.11ª                | 1.06 <sup>ab</sup>   | 0.83 <sup>b</sup>   | 1.31ª              | 0.87 <sup>b</sup>   | 1.18ª                   | 1.18ª              |
| ABV (%)          | 2018 | 63.55 ***  | 39.07 ***                              | 7.54 ***              | 5.10 <sup>b</sup>    | 5.19ª                | 4.94 <sup>c</sup>   | 4.86 <sup>d</sup>  | 5.04 <sup>b</sup>   | 5.11ª                   | 4.91 <sup>c</sup>  |
|                  | 2019 | 13.5 ***   | 10.5 ***                               | +                     | 5.07 <sup>b</sup>    | 5.10 <sup>ab</sup>   | 5.23ª               | 4.91 <sup>c</sup>  | 5.19ª               | 5.04 <sup>b</sup>       | 5.00 <sup>b</sup>  |
| ADF (%)          | 2018 | 147.91 *** | 162.19 ***                             | 36.31 ***             | 91.51ª               | 89.11 <sup>b</sup>   | 89.56 <sup>b</sup>  | 87.35 <sup>c</sup> | 88.72 <sup>b</sup>  | 91.15ª                  | 88.27 <sup>c</sup> |
|                  | 2019 | 8.4 **     | 8.8 **                                 | +                     | 89.71 <sup>ab</sup>  | 90.16 <sup>ab</sup>  | 92.33ª              | 87.68 <sup>b</sup> | 91.92ª              | 88.99 <sup>b</sup>      | 89.00ª             |
| RDF (%)          | 2018 | 148.20 *** | 161.01 ***                             | 36.01 ***             | 75.00ª               | 73.16 <sup>b</sup>   | 73.43 <sup>b</sup>  | 71.70 <sup>c</sup> | 72.82 <sup>b</sup>  | 74.71ª                  | 72.43 <sup>c</sup> |
|                  | 2019 | 8.4 **     | 8.8 **                                 | +                     | 73.60 <sup>ab</sup>  | 73.95 <sup>ab</sup>  | 75.67ª              | 71.98 <sup>b</sup> | 75.35ª              | 73.03 <sup>b</sup>      | 73.03 <sup>b</sup> |
| COE (°P)         | 2018 | 66.82 ***  | 14.91 ***                              | 8.78 ***              | 10.61 <sup>b</sup>   | 11.05ª               | 10.50 <sup>b</sup>  | 10.59 <sup>b</sup> | 10.79 <sup>a</sup>  | 10.68 <sup>b</sup>      | 10.59 <sup>b</sup> |
|                  | 2019 | 30.3 ***   | 14.7 ***                               | 8.0 **                | 10.75ª               | 10.76ª               | 10.78ª              | 10.64 <sup>b</sup> | 10.75ª              | 10.76ª                  | 10.69 <sup>b</sup> |
| RE (°P)          | 2018 | 166.83 *** | 146.56 ***                             | 43.41***              | 2.77 <sup>c</sup>    | 3.10ª                | 2.91 <sup>b</sup>   | 3.12ª              | 3.06ª               | 2.82 <sup>b</sup>       | 3.04ª              |
|                  | 2019 | 6.6 **     | 8.3 **                                 | +                     | 2.96 <sup>ab</sup>   | 2.92 <sup>ab</sup>   | 2.74 <sup>b</sup>   | 3.11ª              | 2.76 <sup>b</sup>   | 3.02ª                   | 3.01ª              |
| Color (SRM)      | 2018 | 9.98 ***   | 21.24 ***                              | +                     | 2.51ª                | 2.13 <sup>b</sup>    | 2.11 <sup>b</sup>   | 2.45ª              | 2.60ª               | 2.22 <sup>b</sup>       | 2.09 <sup>b</sup>  |
|                  | 2019 | 87.5 ***   | 38.0 ***                               | 21.5 ***              | 3.39ª                | 2.20 <sup>b</sup>    | 2.14 <sup>b</sup>   | 3.25ª              | 2.58 <sup>b</sup>   | 2.47 <sup>b</sup>       | 3.18ª              |
| рН               | 2018 | 26.03 ***  | 31.38 ***                              | 5.36 ***              | 4.39ª                | 4.44ª                | 4.43ª               | 4.30 <sup>b</sup>  | 4.42ª               | 4.42ª                   | 4.32 <sup>b</sup>  |
|                  | 2019 | 0.1 NS     | 1.2 NS                                 | +                     | 4.46ª                | 4.47ª                | 4.46ª               | 4.46ª              | 4.46ª               | 4.44 <sup>a</sup>       | 4.49ª              |
| IBU              | 2018 | 79.64 ***  | 25.42 ***                              | 9.53 ***              | 13.34ª               | 9.74 <sup>b</sup>    | 14.03ª              | 13.22ª             | 13.67ª              | 12.05 <sup>b</sup>      | 12.03 <sup>b</sup> |
|                  | 2019 | 3.4 *      | 0.3 NS                                 | †                     | 15.21 <sup>ab</sup>  | 13.16 <sup>b</sup>   | 14.69 <sup>ab</sup> | 15.50ª             | 14.58ª              | 14.40ª                  | 14.93ª             |

 All 9 beer quality parameters tested showed significant effects of G & E although there were crop year variations

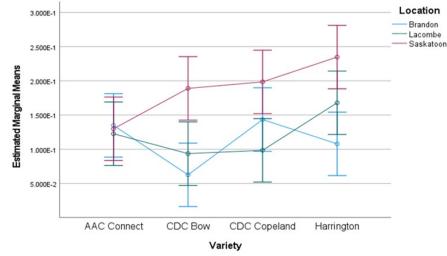



For **2018 crop beer**, all 9 quality parameters showed significant G & E interaction except for beer color; in contrast, for **2019 crop beer** only COE and PH showed significant G x E interaction


### Effects of G, E & G x E Interaction on Beer (sugars)








Error bars: 95% CI



Estimated Marginal Means of Maltotriose

#### Estimated Marginal Means of Wort Fructose



Error bars: 95% CI



### **Attributes Definitions (Aroma and Flavor)**

| Attribute         | Definition                                                                             |
|-------------------|----------------------------------------------------------------------------------------|
| Ethyl Acetate     | Aroma/Flavor, what was described as nail polish                                        |
| Acetaldehyde      | Aroma/Flavor, what was described as green apple                                        |
| Isoamyl Acetate   | Aroma/Flavor, what was described as banana-like                                        |
| Dimethyl sulphide | Aroma/flavor, what was described as cooked/creamed corn                                |
| Grainy            | Aroma/flavor associated with malt kilned at a relatively low temperature               |
| Malty             | Aroma/flavor associated with malt kilned at an increased temperature                   |
| Sweet             | Taste associated with sucrose in solution                                              |
| Bitter            | Taste associated with iso-alpha-acids in solution                                      |
| Astringent        | Feeling in the mouth associated with drying like that produced by saponins in solution |



In total nine beer flavor attributes were assessed by CMBTC inhouse panelists

### **Effects of G, E & G x E Interaction on Sensory Attributes**

8 of the 9 sensory attributes tasted showed no significant G and E effects, except for Acetaldehyde.

CDC Copeland beer had acetaldehyde levels significantly higher than Harrington beer.

This suggests all four varieties evaluated in this study were relatively close to each other as far as the sensory properties are concerned.

| Panelist                       |            | ce of Varia<br>es and Prol |       | Variety (n=126) |                         |                         |                        |  |
|--------------------------------|------------|----------------------------|-------|-----------------|-------------------------|-------------------------|------------------------|--|
| Sensory Attribute <sup>1</sup> | Variety(G) | Location(E)                | G x E | AAC Connect     | CDC Bow                 | CDC<br>Copeland         | Harrington             |  |
|                                |            |                            | 2018  | crop            |                         |                         |                        |  |
| Dimethyl Sulfide               | 0.4 NS     | 0.2 NS                     | +     | 2.5 (1.6)       | 2.3 (1.6)               | 2.5 <sup>(</sup> 1.6)   | 2.5 (1.7)              |  |
| Grainy                         | 0.3 NS     | 0.1 NS                     | +     | 2.3 (1.2)       | 2.4 (1.2)               | 2.4 <sup>(</sup> 1.4)   | 2.3 (1.2)              |  |
| Malty                          | 0.3 NS     | 1.6 NS                     | +     | 2.0 (1.4)       | 2.1 (1.2)               | 2.2 <sup>(</sup> 1.4)   | 2.0 (1.3)              |  |
| Sweet                          | 1.0 NS     | 0.3 NS                     | +     | 1.5 (1.1)       | 1.6 (1.3)               | 1.8 <sup>(</sup> 1.2)   | 1.6 (1.2)              |  |
| Bitter                         | 0.9 NS     | 0.5 NS                     | +     | 2.6 (1.2)       | 2.5 (1.3)               | 2.7 <sup>(</sup> 1.5)   | 2.4 (1.3)              |  |
| Astringent                     | 1.5 NS     | 0.4 NS                     | +     | 2.6 (1.8)       | 2.4 (1.5)               | 2.7 <sup>(</sup> 1.7)   | 2.3 (1.5)              |  |
|                                |            |                            | 2019  | crop            |                         |                         |                        |  |
| Ethyl Acetate                  | 1.1 NS     | 0.0 NS                     | +     | 1.0 (1.2)       | 1.2 (1.1)               | 1.0(1.1)                | 0.9 (1.0)              |  |
| Acetaldehyde                   | 4.0 **     | 0.2 NS                     | +     | $1.1^{ab}(1.1)$ | 1.2 <sup>ab</sup> (1.2) | 1.4 <sup>a (</sup> 1.2) | 1.0 <sup>b</sup> (1.0) |  |
| Isoamyl Acetate                | 0.1 NS     | 2.9 NS                     | +     | 0.6 (0.7)       | 0.6 (0.8)               | 0.6 <sup>(</sup> 0.8)   | 0.6 (0.9)              |  |
| Dimethyl Sulfide               | 0.6 NS     | 2.1 NS                     | +     | 1.2 (1.4)       | 1.2 (1.1)               | 1.3 <sup>(</sup> 1.3)   | 1.1 (1.3)              |  |
| Grainy                         | 1.3 NS     | 2.2 NS                     | +     | 1.4 (1.4)       | 1.5 (1.3)               | 1.2 <sup>(</sup> 1.1)   | 1.2 (1.1)              |  |
| Malty                          | 0.6 NS     | 0.3 NS                     | +     | 1.3 (0.9)       | 1.2 (1.0)               | 1.3 <sup>(</sup> 1.1)   | 1.2 (1.0)              |  |
| Sweet                          | 1.1 NS     | 0.0 NS                     | +     | 1.2 (1.0)       | 1.2 (0.8)               | 1.3 <sup>(</sup> 0.9)   | 1.3 (0.9)              |  |
| Bitter                         | 2.6 NS     | 0.1 NS                     | +     | 2.3 (1.1)       | 2.0 (1.1)               | 2.0 <sup>(</sup> 1.1)   | 2.1 (1.0)              |  |
| Astringent                     | 1.0 NS     | 0.9 NS                     | +     | 1.6 (1.1)       | 1.8 (1.2)               | 1.8 <sup>(</sup> 1.2)   | 1.6 (1.1)              |  |

Evaluated using a 9-point scale.

### Effects of G, E & G x E Interaction on Sensory Attributes

| GC-MS                           |                     |                                 |                  |                               |                               |                               | Mean Values                    |                     |                                |                               |  |
|---------------------------------|---------------------|---------------------------------|------------------|-------------------------------|-------------------------------|-------------------------------|--------------------------------|---------------------|--------------------------------|-------------------------------|--|
|                                 |                     | of Variation -<br>nd Probabilit |                  |                               | Vari                          | ety (n=12)                    |                                | Lo                  | Location (n=16)                |                               |  |
| Measurement                     | Variety<br>(G)      | Location<br>(E)                 | G x E            | CDC<br>Bow                    | AAC<br>Connect                | CDC<br>Copeland               | Harrington                     | Brandon             | Lacombe                        | Saskato<br>on                 |  |
| Acetal Aldehyde<br>(mg/L)       | 2.33<br>(0.1255)    | 0.06<br>(0.9408)                | 0.71<br>(0.6456) | 2.048 ª<br>(0.476)            | 2.341 <sup>a</sup><br>(0.441) | 2.512 ª<br>(0.308)            | 1.909 ª<br>(0.342)             | 2.240 ª<br>(0.496)  | 2.164 ª<br>(0.356)             | 2.203ª<br>(0.518)             |  |
| DMS<br>(mg/L)                   | 1.43<br>(0.2823)    | 0.57<br>(0.5806)                | 1.22<br>(0.363)  | 0.054 ª<br>(0.055)            | 0.032 ª<br>(0.039)            | 0.012 ª<br>(0.019)            | 0.027 ª<br>(0.013)             | 0.022ª<br>(0.014)   | 0.031 ª<br>(0.035)             | 0.041 ª<br>(0.053)            |  |
| Isobutyl<br>Aldehyde*<br>(mg/L) | 51.1***<br>(<.0001) | 4.00*<br>(0.0467)               | 1.12<br>(0.407)  | 0.168 <sup>b</sup><br>(0.001) | 0.174 ª<br>(0.002)            | 0.166 <sup>c</sup><br>(0.001) | 0.167 <sup>bc</sup><br>(0.001) | 0.170 ª (0<br>.004) | 0.169 <sup>ab</sup><br>(0.003) | 0.168 <sup>b</sup><br>(0.002) |  |
| Ethyl Acetate<br>(mg/L)         | 1.57<br>(0.2472)    | 0.44<br>(0.6568)                | 0.37<br>(0.884)  | 3.325ª<br>(0.352)             | 3.14 ª<br>(0.726)             | 2.451 ª<br>(1.027)            | 3.213 ª<br>(0.298)             | 3.23 ª<br>(0.662)   | 2.988 ª<br>(0.881)             | 2.879ª<br>(0.628)             |  |
| Isopentyl<br>Acetate*<br>(mg/L) | 1.71<br>(0.2181)    | 0.08<br>(0.9225)                | 0.44<br>(0.8364) | 0.085 ª<br>(0.064)            | 0.765ª<br>(1.61)              | 1.836 a<br>(2.1)              | 0.111 ª<br>(0.048)             | 0.533 ª<br>(1.215)  | 0.839 ª<br>(1.527)             | 0.727 ª<br>(1.696)            |  |

\*Described as apple/banana/fruity

**GC-MS data** indicated significant effects of G and E were for **isobutyl aldehyde**; **AAC Connect beer** with the highest concentration of Isobutyl Aldehyde and **CDC Copeland beer had the lowest**. Locationally, **Brandon beer** had the highest isobutyl aldehyde and **Saskatoon beer** had the lowest.



# *Effect of variety on Volatile compounds detected in the beers of 2019 crop*

Out of the **64** volatile compounds detected in 2019 crop beers, **43** showed significant varietal differences

|   | ASTER BREWED                |  |
|---|-----------------------------|--|
|   | EST <u>B</u> 1887           |  |
| V | RESOCIATION OF THE AMERICAS |  |

|   |                   |                                                          |                                                                                                                                | Source                                                      | Vari                            | ety Mean Va                   | lues (ug/L, p                  | pb)                          |
|---|-------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------|-------------------------------|--------------------------------|------------------------------|
| 1 | Chemical<br>Class | Volatile                                                 | Odour                                                                                                                          | of<br>Variation<br>- F-<br>values<br>and<br>Probabili<br>ty | CDC Bow<br>(n=3)                | AAC Connect<br>(n=4)          | CDC<br>Copeland<br>(n=3)       | Harrington<br>(n=3)          |
|   | Amine             | 3-Isoquinolinamine ;<br>3-Aminoisoquinoline              |                                                                                                                                | 16.60 ***                                                   | 0.29ª (0.15)                    | ND                            | ND                             | 0.33 (0.08)                  |
|   | Alkane            | Pentane, 2-chloro                                        |                                                                                                                                | 14.62 ***                                                   |                                 | 6.68 <sup>a</sup> (2.07)      |                                | 1.36 <sup>c</sup> (1.00)     |
|   | Alkene            | 1-Octene, 3-methyl-                                      |                                                                                                                                | 9.35 **                                                     | 425.65 <sup>b</sup><br>(173.16) | 762.86ª<br>(240.19)           | 415.71 <sup>b</sup><br>(99.05) | 0.36 (0.29)                  |
|   | Ester             | Acetic acid butyl<br>ester                               | Sweet, ripe banana, tutti frutti,<br>tropical and candy-like with green<br>nuances, Solvent, fruity, pear,<br>pineapple, berry | 45.06 ***                                                   | 0.82 <sup>b</sup> (0.06)        | 0.47 <sup>d</sup> (0.06)      | 1.01ª (0.03)                   | 24.98<br>(31.48)             |
|   | Ester             | Hexanoic acid, 1-<br>methylethyl ester                   | fruity pineapple loganberry berry                                                                                              | 25.05 ***                                                   | 4.58ª (0.44)                    | 2.70 <sup>c</sup> (0.13)      | 3.33 <sup>bc</sup> (0.04)      | 0.16 <sup>ab</sup><br>(0.12) |
|   | Ester             | Octanoic acid, ethyl<br>ester                            | Fruity, Floral, Banana, Pineapple,<br>Brandy                                                                                   | 10.53 ***                                                   | 0.10 <sup>a</sup> (0.01)        | 0.07 <sup>b</sup> (0.01)      | 0.06 <sup>b</sup> (0.01)       |                              |
|   | Ester             | Propanoic acid, 1-<br>methylethyl ester                  | banana Sweet fruity rum juicy fruit grape pineapple                                                                            | 7.03 **                                                     | 4.29ª (1.00)                    | 2.40 <sup>bc</sup> (0.52)     | 3.98 <sup>ab</sup> (0.34)      | 2.15 <sup>c</sup> (1.30)     |
|   | Ester             | Isobutyl acetate                                         | Apple, banana fruity aroma in sweet wines                                                                                      | 5.74 **                                                     | 1.34ª (0.21)                    | 1.19 <sup>ab</sup><br>(0.21)  | 1.52ª (0.20)                   | 1.31 (0.29)                  |
|   | Ester             | Acetic acid pentyl<br>ester ; Amyl acetate               | Banana, apple                                                                                                                  | 62.54 ***                                                   | 24.93ª<br>(2.08)                | 11.67 <sup>c</sup><br>(1.19)  | 24.44ª<br>(0.67)               | 20.34 <sup>b</sup><br>(2.21) |
|   | Ester             | Amyl isovalerate                                         | apple fresh fruity                                                                                                             | 0.26 NS                                                     | 0.05 (0.01)                     | 0.04 (0.01)                   | 0.05 (0.01)                    | 0.22 <sup>b</sup> (0.04)     |
|   | Ester             | Nonanoic acid, ethyl<br>ester (3000)                     | Waxy, cognac, estery, fruity apple<br>and banana, tropical, winey,<br>pineapple                                                | 9.06 **                                                     | 27.56ª<br>(5.97)                | 23.38 <sup>ab</sup><br>(1.92) | 15.40°<br>(1.28)               | 1.84ª (0.07)                 |
|   | Ester             | Decanoic acid, ethyl<br>ester                            | sweet waxy fruity apple grape oily<br>brandy, floral, banana-like,<br>pineapple-like                                           | 19.03 ***                                                   | 0.46ª (0.15)                    | 0.37 <sup>ab</sup><br>(0.11)  | ND                             | 1.07 <sup>b</sup> (0.18)     |
|   | Ester             | 10-Undecenoic acid,<br>ethyl ester; Ethyl<br>undecenoate | Fruit with wine, waxy and creamy shades                                                                                        | 8.33 **                                                     | 0.34 <sup>ab</sup><br>(0.12)    | 0.45ª (0.10)                  | 0.19 <sup>b</sup> (0.02)       | 0.22 <sup>b</sup> (0.05)     |

# Effect of variety on Volatile compounds detected in the beers of 2019 crop barley(cont'd)

#### Here listed:

13 Ester20 Alcohol7 Aldehyde1 Acid1 Amine

- 1 Alkane
- 1 Alkene

|      | ER RRE            |        |  |
|------|-------------------|--------|--|
| MAS  | TER BRE           | VERS   |  |
| EST  |                   | 1887   |  |
| 7550 | CIATION OF THE AM | ERICAS |  |

|                   |                                                              |                                                                                                                   | Source                                                      | Var                             | ietv Mean Va                    | lues (ug/L, pi                   | ob)                           |
|-------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------|---------------------------------|----------------------------------|-------------------------------|
| Chemical<br>Class | Volatile                                                     | Odour                                                                                                             | of<br>Variation<br>- F-<br>values<br>and<br>Probabili<br>ty | CDC Bow<br>(n=3)                | AAC Connect<br>(n=4)            | CDC<br>Copeland<br>(n=3)         | Harrington<br>(n=3)           |
| Ester             | Propanoic acid, 2-<br>methyl-, 2-<br>phenylethyl ester       | Floral, fruity, rose, tea, peach,<br>pastry, honey, yeasty, balsamic                                              | 8.19 **                                                     | 8.00 <sup>b</sup> (0.70)        | 7.74 <sup>b</sup> (0.61)        | 10.27ª<br>(1.38)                 | 6.96 <sup>b</sup><br>(1.29)   |
| Ester             | Formic acid butyl<br>ester (87)                              | fruity plum rum brandy                                                                                            | 4.96 *                                                      | 1431.35ª<br>(99.01)?            | 785.88ª<br>(533.95)?            | 1636.43ª<br>(151.54)?            | 0.94 <sup>b</sup><br>(0.25)   |
| Ester             | Propyl acetate;<br>propyl ethanoate<br>(240)                 | solvent celery fruity fusel<br>raspberry pear                                                                     | 8.86 **                                                     | 318.15 <sup>ab</sup><br>(74.81) | 229.55 <sup>bc</sup><br>(45.36) | 368.63ª<br>(18.06)               | 165.45°<br>(89.65)            |
| Acid              | Propanoic acid, 3-<br>(methylthio                            | Meaty, onion, fruity (low concentration)                                                                          | 4.96 *                                                      | 1.07 <sup>ab</sup> (0.34)       | 0.28 <sup>b</sup> (0.15)        | 0.84 <sup>ab</sup> (0.55)        | 1.35ª (0.64)                  |
| Alcohol           | (+)-Humulenol II                                             | Hop related flavour compound                                                                                      | 8.81 **                                                     | 0.37 <sup>a</sup> (0.06)        | 0.22 <sup>b</sup> (0.05)        | 0.19 <sup>b</sup> (0.07)         | 0.35 <sup>a</sup> (0.08)      |
| Alcohol           | 1-Heptanol                                                   | Musty, pungent, leafy green,<br>vegetative and fruity, apple and<br>banana, violet, sweet, woody, peony,<br>nutty | 0.82 NS                                                     | 0.78 (0.13)                     | 0.76 (0.15)                     | 0.98 (0.42)                      | 0.78 (0.16)                   |
| Alcohol           | L-terpinen-4-ol                                              | Mild earthy and woody odor                                                                                        | 10.10 ***                                                   | 0.07 <sup>b</sup> (0.01)        | 0.07 <sup>b</sup> (0.01)        | 0.07 <sup>b</sup> (0.01)         | 18.96 <sup>bc</sup><br>(3.48) |
| Alcohol           | Isoamyl acetate; 1-<br>Butanol, 3-methyl-,<br>acetate (1100) | sweet fruity banana solvent                                                                                       | 6.68 **                                                     | 593.00ª<br>(274.59)             | 20.43 <sup>b</sup><br>(16.45)   | 339.45ª<br>(300.47)              | 0.19 (0.07)                   |
| Alcohol           | 3-Pentanol                                                   | sweet herbal oily nutty                                                                                           | 10.13 ***                                                   | 102.21 <sup>ab</sup><br>(57.40) | 0.34 <sup>c</sup> (0.17)        | 138.71ª<br>(19.29)               | 0.02 <sup>b</sup> (0.04)      |
| Alcohol           | 1-Hexanol<br>(2500)                                          | Green, herbaceous, woody, sweet, apple                                                                            | 9.21 **                                                     | 353.94ª<br>(38.13)              | 0.06 <sup>b</sup> (0.11)        | 201.09 <sup>ab</sup><br>(231.63) | 280.33ª<br>(75.39)            |
| Alcohol           | 1-Octanol                                                    | Waxy, green, citrus, orange fruity,<br>aldehydic and floral with a sweet,<br>fatty, coconut nuance                | 0.99 NS                                                     | 0.31 (0.05)                     | 0.25 (0.05)                     | 0.29 (0.13)                      | 0.18ª (0.05)                  |
| Alcohol           | 2-Heptanol                                                   | fresh lemon grass herbal sweet floral fruity green                                                                | 18.50 ***                                                   | 0.28ª (0.02)                    | 0.16 <sup>c</sup> (0.01)        | 0.20 <sup>bc</sup> (0.03)        | 0.25 (0.08)                   |
| Alcohol           | 2-Hexanol                                                    | winey fruity fatty terpenic cauliflower                                                                           | 3.26 NS                                                     | 1.12 (0.35)                     | 0.86 (0.52)                     | 1.50 (0.78)                      | 0.64 <sup>c</sup> (0.11)      |
| Alcohol           | 1-Propanol, 2-methyl<br>(Isobutyl Alcohol)<br>(7000)         | Whiskey, fusel oil, wine                                                                                          | 0.41 NS                                                     | 207.63<br>(189.79)              | 184.79<br>(130.05)              | 225.95<br>(161.75)               | 0.70 (0.13)                   |

# Effect of variety on Volatile compounds detected in the beers of 2019 crop barley (cont'd)

|                   |                                                                            |                                                                                  | Source                                                      | Var                       | iety Mean Va             | lues (ug/L, pi            | ob)                          |
|-------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------|--------------------------|---------------------------|------------------------------|
| Chemical<br>Class | Volatile                                                                   | Odour                                                                            | of<br>Variation<br>- F-<br>values<br>and<br>Probabili<br>ty | CDC Bow<br>(n=3)          | AAC Connect<br>(n=4)     | CDC<br>Copeland<br>(n=3)  | Harrington<br>(n=3)          |
| Alcohol           | 4-Penten-2-ol, 4-<br>methyl-                                               | Pungent, fusel, cognac and wine, cocoa, with green fruity undernotes             | 2.27 NS                                                     | 0.63 (0.15)               | 0.63 (0.28)              | 0.58 (0.09)               | 241.31<br>(136.65)           |
| Alcohol           | 2-Furanmethanol,<br>acetate                                                | Fruity ethereal rummy caramel brown<br>cooked cognac tequila caramellic<br>nutty | 5.59 **                                                     | 1.19ª (0.30)              | 0.35 <sup>b</sup> (0.15) | 0.60 <sup>ab</sup> (0.55) | 1.16ª (0.47)                 |
| Alcohol           | 2-Butanol, 3-methyl-;<br>Isoamyl alcohol                                   | Fusel, alcoholic, pungent, etherial, cognac, fruity, banana and molasses         | 39.86<br>***                                                | 1.25 <sup>b</sup> (0.23)  | 1.78ª (0.09)             | 0.94 <sup>bc</sup> (0.15) | 0.50 <sup>ab</sup><br>(0.09) |
| Alcohol           | 1-Pentanol, 2-methyl-<br>, acetate ; Acetic<br>acid, 2-methylamyl<br>ester |                                                                                  | 4.78 *                                                      | 0.11 <sup>ab</sup> (0.10) | ND                       | 0.18ª (0.14)              | 0.24 <sup>ab</sup><br>(0.03) |
| Alcohol           | 2-Heptanol-6 methyl                                                        |                                                                                  | 1.83 NS                                                     | 0.68 (0.07)               | 0.68 (0.07)              | 0.89 (0.28)               | 0.36 (0.18)                  |
| Alcohol           | 2-Hexanol-3-methyl                                                         |                                                                                  | 3.18 NS                                                     | 1.83 (0.22)               | 1.19 (0.14)              | 1.60 (0.54)               | 1.58 (0.36)                  |
| Alcohol           | 3-Buten-2-ol, 3-<br>methyl-                                                |                                                                                  | 5.90 **                                                     | 1.09 <sup>ab</sup> (0.37) | 1.30ª (0.15)             | 1.16ª (0.36)              | 0.41 <sup>b</sup> (0.15)     |
| Alcohol           | 3-Heptanol, 5-<br>methyl-                                                  |                                                                                  | 0.70 NS                                                     | 0.95 (0.27)               | 0.70 (0.27)              | 1.11 (0.76)               | 0.05 (0.01)                  |
| Alcohol           | 3-Heptanol-4-methyl<br>3-methyl-1-hexen-3-                                 |                                                                                  | 0.88 NS                                                     | 0.29 (0.04)               | 0.24 (0.02)              | 0.30 (0.09)               | 0.13 (0.03)                  |
| Alcohol           | ol                                                                         |                                                                                  | 0.07 NS                                                     | 1.41 (0.13)               | 1.29 (0.14)              | 1.40 (1.02)               | 0.11 (0.11)                  |
| Aldehyde          | Heptanal<br>(3-30)                                                         | Sweet, fruity, nutty, green                                                      | 0.63 NS                                                     | 0.02 (0.02)               | 0.01 (0.02)              | 0.02 (0.02)               | 0.56 <sup>b</sup> (0.27)     |
| Aldehyde          | Hexanal-3-methyl                                                           | Sweet green                                                                      | 21.63 ***                                                   | 1.46 <sup>a</sup> (0.15)  | 0.72 <sup>c</sup> (0.07) | 1.24 <sup>ab</sup> (0.18) | 0.34 <sup>a</sup> (0.12)     |
| Aldehyde          | 2-Hexenal                                                                  | sweet almond fruity green leafy apple plum vegetable                             | 4.09 *                                                      | 0.51 <sup>ab</sup> (0.05) | 0.36 <sup>b</sup> (0.04) | 0.54ª (0.14)              | 1.19 <sup>a</sup> (0.28)     |
| Aldehyde          | Isobutylaldehyde<br>dimethyl acetal                                        | Brandy, Pleasant, Fruity, Wine                                                   | 3.80 *                                                      | 0.22 <sup>ab</sup> (0.09) | 0.08 <sup>b</sup> (0.10) | 1.92ª (2.07)              | 0.29 (0.21)                  |
| Aldehyde          | Benzeneacetaldehyde<br>, a-ethyl-                                          | Floral                                                                           | 108.87<br>***                                               | ND                        | ND                       | 0.45ª (0.09)              | ND                           |
| Aldehyde          | Benzaldehyde<br>(350-3500)                                                 | Almond                                                                           | 3.40 NS                                                     | 0.13 (0.01)               | 0.13 (0.03)              | 0.17 (0.02)               | 0.69° (0.16)                 |
| Aldehyde          | Propanal, 2,3-<br>dihydroxy-, (S)-                                         |                                                                                  | 3.42 NS                                                     | 2.06 (0.19)               | 0.71 (0.78)              | 2.15 (1.44)               | 1.80 (0.36)                  |



#### Effects of G, E & G x E Interaction on Non-volatile compounds detected in beers of 2019 crop

Out of the **32** compounds detected:

**21** showed significant

variety effect;

8 showed significant

location effect

1 showed significant G x E interaction.

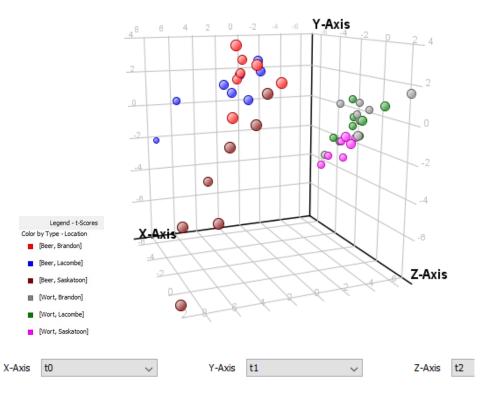
| Compound        |                | of Variat<br>and Prob |       | Var             | Variety Mean Values (mM)<br>n=6 |                  |                 |                 |                 | Location Mean<br>Values (mM)<br>n=8 |  |  |
|-----------------|----------------|-----------------------|-------|-----------------|---------------------------------|------------------|-----------------|-----------------|-----------------|-------------------------------------|--|--|
|                 | Variety<br>(G) | Location<br>(E)       | G x E | CDC Bow         | AAC<br>Connect                  | CDC<br>Copeland  | Harringto<br>n  | Brando<br>n     | Lacom<br>be     | Saskat<br>oon                       |  |  |
| Alcohols        |                |                       |       |                 |                                 |                  |                 |                 |                 |                                     |  |  |
| Glycerol        | 1.05<br>NS     | 0.46 NS               | +     | 2.20<br>(0.20)  | 1.89<br>(0.35)                  | 2.08<br>(0.48)   | 2.17<br>(0.22)  | 2.12<br>(0.32)  | 1.99<br>(0.46)  | 2.14<br>(0.21)                      |  |  |
| Carboxylic Acid |                |                       |       |                 |                                 |                  |                 |                 |                 |                                     |  |  |
| 4-Aminobutyrate | 1.51 NS        | 0.71 NS               | +     | 0.33<br>(0.04)  | 0.27<br>(0.08)                  | 0.36<br>(0.12)   | 0.32<br>(0.02)  | 0.32<br>(0.13)  | 0.29<br>(0.03)  | 0.34<br>(0.04)                      |  |  |
| Fumarate        | 4.28 *         | 5.78 *                | t     | 0.03a<br>(0.00) | 0.02b<br>(0.01)                 | 0.03b<br>(0.00)  | 0.02b<br>(0.00) | 0.02b<br>(0.01) | 0.02b<br>(0.00) | 0.03a<br>(0.00)                     |  |  |
| Lactate         | 4.21 *         | 34.07<br>***          | +     | 0.27a<br>(0.12) | 0.18b<br>(0.07)                 | 0.25ab<br>(0.10) | 0.26a<br>(0.10) | 0.21b<br>(0.06) | 0.16b<br>(0.03) | 0.35a<br>(0.07)                     |  |  |
| Phenylacetate   | 2.21 NS        | 0.76 NS               | †     | 0.19<br>(0.04)  | 0.14<br>(0.05)                  | 0.20<br>(0.04)   | 0.20<br>(0.06)  | 0.18<br>(0.05)  | 0.17<br>(0.05)  | 0.20<br>(0.04)                      |  |  |
| Pyroglutamate   | 15.72<br>***   | 0.68 NS               | †     | 0.98a<br>(0.04) | 0.68b<br>(0.12)                 | 0.94a<br>(0.05)  | 1.06a<br>(0.13) | 0.91<br>(0.22)  | 0.91<br>(0.13)  | 0.93<br>(0.16)                      |  |  |
| Pyruvate        | 7.26 **        | 4.59 *                | +     | 0.99a<br>(0.07) | 0.77b<br>(0.18)                 | 0.97a<br>(0.13)  | 1.01a<br>(0.03) | 0.85b<br>(0.17) |                 | 0.96ab<br>(0.09)                    |  |  |

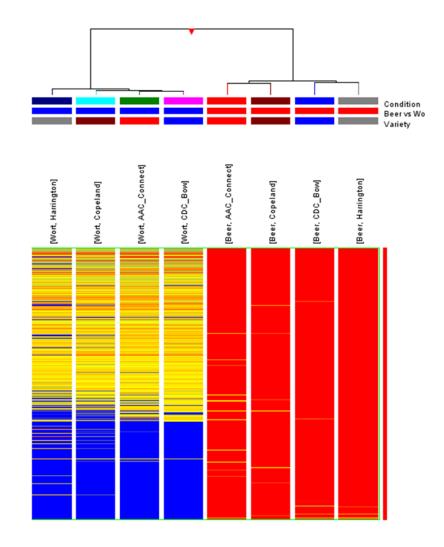


# Effects of G & E & G x E Interaction on Non-volatile compounds detected in beers of 2019 crop (cont'd)

Out of the 32 compounds detected, 21 showed significant variety effect; 8 showed significant location effect and 1 showed significant G x E interaction.

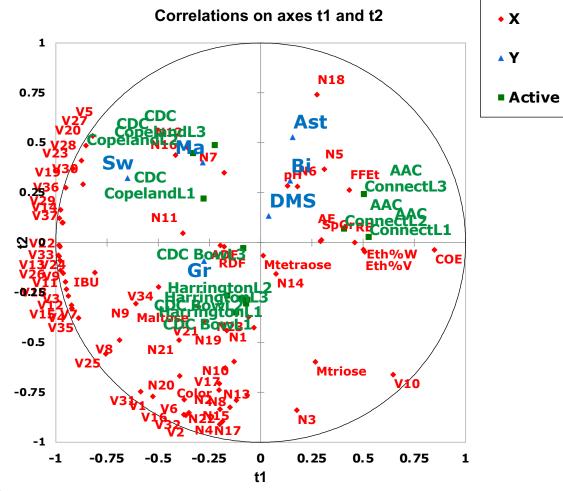
| Compound      |                | of Variat<br>and Prob |       | Va               | M)                          | Location Mean<br>Values (mM)<br>n=8 |                  |                  |                 |                 |
|---------------|----------------|-----------------------|-------|------------------|-----------------------------|-------------------------------------|------------------|------------------|-----------------|-----------------|
|               | Variety<br>(G) | Location<br>(E)       | G x E | CDC Bow          | AAC<br>Connect              | CDC<br>Copeland                     | Harringto<br>n   | Brando<br>n      | Lacom<br>be     | Saskat<br>oon   |
| Amino Acids   |                |                       |       |                  |                             |                                     |                  |                  |                 |                 |
| Alanine       | 5.97 **        | 0.47 NS               | +     | 0.69ª<br>(0.12)  | 0.39 <sup>b</sup><br>(0.15) | 0.58 <sup>ab</sup><br>(0.15)        | 0.66ª<br>(0.11)  | 0.57<br>(0.17)   | 0.61<br>(0.15)  | 0.55<br>(0.21)  |
| Betaine       | 7.61 **        | 2.66 NS               | +     | 0.45bc<br>(0.06) | 0.40c<br>(0.09)             | 0.57a<br>(0.07)                     | 0.50ab<br>(0.05) | 0.52<br>(0.12)   | 0.44<br>(0.08)  | 0.48 (0.04)     |
| Isoleucine    | 10.16<br>***   | 1.56 NS               | +     | 0.22a<br>(0.05)  | 0.08c<br>(0.04)             | 0.13bc<br>(0.05)                    | 0.20ab<br>(0.05) | 0.17<br>(0.07)   | 0.17<br>(0.07)  | 0.13 (0.08)     |
| Leucine       | 8.12 **        | 0.89 NS               | +     | 0.37a<br>(0.08)  | 0.15c<br>(0.05)             | 0.21bc<br>(0.09)                    | 0.32ab<br>(0.10) | 0.28<br>(0.13)   | 0.29<br>(0.12)  | 0.24 (0.12)     |
| Lysine        | 11.41<br>***   | 0.67 NS               | +     | 0.16a<br>(0.02)  | 0.09b<br>(0.03)             | 0.14a<br>(0.02)                     | 0.16a<br>(0.03)  | 0.14<br>(0.04)   | 0.13<br>(0.03)  | 0.13 (0.04)     |
| Phenylalanine | 9.36 ***       | 4.95 *                | †     | 0.38a<br>(0.06)  | 0.19b<br>(0.09)             | 0.28ab<br>(0.10)                    | 0.34a<br>(0.05)  | 0.31ab<br>(0.10) | 0.33a<br>(0.08) | 0.23b<br>(0.11) |
| Proline       | 7.75 **        | 2.72 NS               | +     | 2.65a<br>(0.16)  | 1.85b<br>(0.44)             | 2.72a<br>(0.76)                     | 2.96a<br>(0.19)  | 2.68<br>(0.68)   | 2.69<br>(0.54)  | 2.26<br>(0.55)  |
| Tryptophan    | 8.55 **        | 25.66<br>***          | +     | 0.11a<br>(0.03)  | 0.08b<br>(0.03)             | 0.11a<br>(0.04)                     | 0.13a<br>0.04)   | 0.15a<br>(0.03)  | 0.09b<br>(0.02) | 0.09b<br>(0.03) |
| Tyrosine      | 7.55 **        | 1.58 NS               | +     | 0.37a<br>(0.05)  | 0.23b<br>(0.07)             | 0.34a<br>(0.07)                     | 0.36a<br>(0.05)  | 0.35<br>(0.10)   | 0.33<br>(0.07)  | 0.30<br>(0.08)  |
| Valine        | 9.79 ***       | 1.70 NS               | †     | 0.55a<br>(0.06)  | 0.30b<br>(0.13)             | 0.44ab<br>(0.10)                    | 0.55a<br>(0.06)  | 0.49a<br>(0.14)  | 0.48a<br>(0.11) | 0.41b<br>(0.15) |





# Effects of G & E & G x E Interaction on non-volatile compounds detected in beers of 2019 crop (cont'd)

| Lipids                             |              |           |            |                              |                              |                          |                              |                              |                 |                             |  |  |
|------------------------------------|--------------|-----------|------------|------------------------------|------------------------------|--------------------------|------------------------------|------------------------------|-----------------|-----------------------------|--|--|
| O-Phosphocholine                   | 6.48 **      | 15.37 *** | +          | 0.31ª<br>(0.09)              | 0.25 <sup>ab</sup><br>(0.06) | 0.21 <sup>b</sup> (0.07) | 0.21 <sup>b</sup><br>(0.05)  | 0.24 <sup>b</sup><br>(0.07)  | 0.31ª<br>(0.05) | 0.19 <sup>b</sup><br>(0.05) |  |  |
| Nucelotides, nucleosides and bases |              |           |            |                              |                              |                          |                              |                              |                 |                             |  |  |
| 2'-Deoxyadenosine                  | 3.22 *       | 0.59 NS   | +          | 0.15 <sup>ab</sup><br>(0.01) | 0.13 <sup>b</sup><br>(0.03)  | 0.17ª (0.03)             | 0.15 <sup>ab</sup><br>(0.01) | 0.15<br>(0.04)               | 0.14<br>(0.02)  | 0.16<br>(0.03)              |  |  |
| 2'-Deoxyguanosine                  | 3.21 NS      | 0.25 NS   | +          | 0.05<br>(0.01)               | 0.04 (0.01)                  | 0.05 (0.01)              | 0.04 (0.00)                  | 0.04<br>(0.01)               | 0.04 (0.01)     | 0.04<br>(0.01)              |  |  |
| Adenosine                          | 7.43 **      | 8.58 **   | +          | 0.06ª<br>(0.01)              | 0.04 <sup>b</sup><br>(0.01)  | 0.06 <sup>a</sup> (0.01) | 0.06ª<br>(0.01)              | 0.05 <sup>ab</sup><br>(0.01) | 0.06ª<br>(0.01) | 0.05 <sup>b</sup><br>(0.01) |  |  |
| Cytidine                           | 2.54 NS      | 15.70 *** | 7.67<br>** | 0.11<br>(0.03)               | 0.09 (0.02)                  | 0.11 (0.02)              | 0.11<br>(0.03)               | 0.11a<br>(0.02)              | 0.11a<br>(0.02) | 0.08b<br>(0.02)             |  |  |
| Guanosine                          | 1.53 NS      | 0.13 NS   | +          | 0.13<br>(0.01)               | 0.11 (0.02)                  | 0.13 (0.02)              | 0.13 (0.01)                  | 0.13<br>(0.02)               | 0.13 (0.02)     | 0.13<br>(0.01)              |  |  |
| Thymidine                          | 2.07 NS      | 2.48 NS   | +          | 0.04<br>(0.01)               | 0.03 (0.01)                  | 0.04 (0.01)              | 0.04<br>(0.01)               | 0.03<br>(0.01)               | 0.03<br>(0.01)  | 0.04<br>(0.01)              |  |  |
| Uridine                            | 2.37 NS      | 1.94 NS   | +          | 0.13<br>(0.01)               | 0.10 (0.03)                  | 0.11 (0.02)              | 0.12<br>(0.01)               | 0.11<br>(0.02)               | 0.11<br>(0.02)  | 0.12<br>(0.02)              |  |  |
| Sugars                             |              |           |            |                              |                              |                          |                              |                              |                 |                             |  |  |
| 1,6-Anhydro-β-D-glucose            | 6.27 **      | 3.38 NS   | +          | 0.29a<br>(0.04)              | 0.18b<br>(0.05)              | 0.21b (0.07)             | 0.21b<br>(0.01)              | 0.21<br>(0.04)               | 0.25<br>(0.06)  | 0.20<br>(0.07)              |  |  |
| Cellobiose                         | 1.92 NS      | 3.58 NS   | +          | 0.47<br>(0.07)               | 0.34 (0.11)                  | 0.48 (0.19)              | 0.44<br>(0.13)               | 0.47<br>(0.08)               | 0.49<br>(0.17)  | 0.34<br>(0.11)              |  |  |
| Glucose                            | 6.58 **      | 1.71 NS   | +          | 0.48 <sup>b</sup><br>(0.11)  | 0.39 <sup>b</sup><br>(0.14)  | 1.66ª (1.22)             | 0.36 <sup>b</sup><br>(0.10)  | 0.84<br>(1.01)               | 0.92 (0.95)     | 0.41<br>(0.12)              |  |  |
| Maltose                            | 2.98 NS      | 1.35 NS   | +          | 3.95<br>(0.40)               | 3.15 (0.64)                  | 3.12 (1.68)              | 4.44<br>(0.26)               | 3.24<br>(1.04)               | 3.97<br>(1.14)  | 3.78<br>(0.92)              |  |  |
| Xylose                             | 10.78<br>*** | 1.79 NS   | +          | 0.51bc<br>(0.10)             | 0.35c<br>(0.09)              | 0.71a (0.19)             | 0.63ab<br>(0.05)             | 0.56a<br>(0.22)              | 0.60a<br>(0.19) | 0.49b<br>(0.11)             |  |  |
| Vitamins                           |              |           |            |                              |                              |                          |                              |                              | · ·             |                             |  |  |
| Choline                            | 10.12<br>*** | 1.31 NS   | +          | 0.55bc<br>(0.05)             | 0.45c<br>(0.12)              | 0.68a (0.08)             | 0.61ab<br>(0.04)             | 0.57<br>(0.15)               | 0.54<br>(0.10)  | 0.60<br>(0.09)              |  |  |
| Pyridoxine                         | 0.91 NS      | 0.31 NS   | †          | 0.01<br>(0.00)               | 0.01 (0.01)                  | 0.02 (0.01)              | 0.01<br>(0.00)               | 0.01<br>(0.00)               | 0.01<br>(0.01)  | 0.01<br>(0.00)              |  |  |




In 2018 crop samples, a clear separation between beer and wort (Figure 1), as well as some special differences between growing locations, was observed using PCA analysis based on the 180 water-soluble, untargeted non-volatile compounds detected by the LC-QTOF.





HASTER BREWERS ESTB TSISOCIATION OF THE AMERICUS In 2019 crop samples Hierarchical Clustering Analysis of beer and wort compounds (n = 480) detected by LC-QTOF-MS

### **Partial Least Square Discrimination Analysis (PLS-DA)**



| • Isopentyl acetate: (Fruity Aron | <u>ma)</u> |
|-----------------------------------|------------|
| • Alpha Calacorene: (Woody)       |            |
| • Ethyl decanoate: (Sweet, Appl   | <u>e)</u>  |
| • <u>Specific Gravity</u>         |            |
| • <u>IBU</u>                      |            |
| • <u>Apparent extract</u>         |            |
| • <u>Hop Flavour</u>              |            |

Abbreviations for Volatiles 1-Butanol-3-Methyl acetate (ButMA) Ethyl decanoate (EtDec) Alpha Calacorene (Acal) Hexanoic acide (HexAc) Benzene-3 methylbutyl (BenMB) Octanoic acid (OctAc) Carvacrol [(Phenol, 2-methyl-5-(1-ethylmethyl)] - Car Butylated hydroxytoluene (ButHT) Murrorul (Mur) Cadinol (Cad)



### **Conclusions**

- Barley variety, growing location and their interactions showed significant impacts on the beer's overall quality.
- Variety and location showed limited influence on the nine sensory attributes evaluated in this study. Out of these attributes, only acetaldehyde showed significant varietal difference. Its level in CDC Copeland beer was significantly higher than that in Harrington beer. This might suggest that the four barley varieties evaluated in this study are relatively close to each other in terms of sensory properties. Of course, this is did not take into account the differences in other sensory attributes that were not assessed in this study.
- Variety and location showed significant influence on the flavor compounds detected in beers by GC-MS.



### **Conclusions**

- Some of the underlying organic compounds in wort and beer that are linked to specific sensory attributes have been identified for AAC Connect, CDC Bow, CDC Copeland and Harrington barley. It is evident that variety and growing location had significant influence on these organic compounds.
- The results demonstrated that the effects of variety and growing location can carry through the malting and brewing process to impact a beer's flavor attributes in terms of beer sensory and the underlying organic compounds.
- In addition to the barley varietal effect on beer flavor, the barley's "terroir" effect on beer flavor should be considered as well. Quality of finished malt is determined from the interaction of the barley grain and the processing conditions applied, while raw barley grain quality is determined by barley's genetic potential and the growing conditions (weather, soil and farming practice) the barley was subjected to prior to harvesting.



## Acknowledgments

### Funding from:

Government of Canada under the Canadian Agricultural Partnership's AgriScience Program, a federal, provincial, and territorial initiative

Canadian barley industry funders Saskatchewan Barley Development Commission, the Brewing and Malting Barley Research Institute and the Canadian Malting Barley Technical Center.












### **Acknowledgments**

Dr. Michel Aliani and Donna Ryland at University of ManitobaDr. Aaron Beattie's team at University of SaskatchewanDr. Ana Badea's team at AAFC Brandon Research and development CentreDr. Flavio Capettini's team at Field Crop development centre, Olds College



The CMBTC Team





### Yueshu Li yli@cmbtc.com









