Balancing Acts in the Production and Selection Decisions of Malt to Promote Beer Flavor Stability

Sean Tynan, Cody Ashe, Emily Del Bel, Kain Escobar, Theresa Kukar and Xiang S Yin

Rahr Corporation

Brewing Summit Aug 14-17, 2022

UNITED WE BREW

- Introduction to malt-derived staling mechanisms
- Impact of thermal load
- Lipoxygenase (LOX) in malt and impact on beer T2N
- Amino acids and Strecker Degradation
- Summary Balancing acts in malting

Common malt-derived staling mechanisms – manifestation dependent on beer style

Common malt-related beer staling phenomena and the underline mechanisms in malting

Manifestation of beer staling	Susceptible beer types	Mechanism	Malt factor and cause
Caramel-like, sweet, malty, butterscotch	Darker beers	Thermal load promotes formation of furfural and hydroxymethylfurfural (HMF)	Heating of sugar- containing ingredients in malt kilning or roasting
Sherry, soy sauce, meaty, cooked potato or almond-like	All-malt or malt-rich beers	Strecker Degradation of amino acids	Excessive FAN to yeast assimilation
AdjunctPrPapery, fatty,lagers, lightnocardboard-likebeerscardboard		Precursors of trans-2- nonenal (T2N) formation catalyzed by LOX	LOX level and peroxidases (POD) from malt
		Free radical catalyzed oxidation of unsaturated fatty acids like linoleic acid	Oxygen radicals or active metal ions trigger non- enzymatic oxidations

EPR for measuring free radical reactions

 Electron paramagnetic resonance (EPR),

spectroscopically tracks the free radicals

- Free Radical Production in presence of O2 with UV, Fe, Cu .OH, ROO.
- Predicts the likelihood of oxidation

Barr et al 2005

- Introduction to malt-derived staling mechanisms
- Impact of thermal load
- Lipoxygenase (LOX) in malt and impact on beer T2N

6

- Amino acids and Strecker Degradation
- Summary Balancing acts in malting

Free radical development (EPR values) during wort boiling

- Trial malt was more resistant to radical formation than the control malts (Yin, 2012)

Changes in furfural* levels in a pale ale beer with different degrees of aging

Reduce thermal load (in TBI: thiobarbituric acid index) may lead to LOX survival in malt

Aron and Yin, 2019

- Introduction to malt-derived staling mechanisms
- Impact of thermal load
- Lipoxygenase (LOX) in malt and impact on beer T2N

10

- Amino acids and Strecker Degradation
- Summary Balancing acts in malting

LOX and T2N-potential trending in the top, middle and bottom layers in kiln in a commercial batch of malt (Yin et al 2022)

High LOX malt leads to high T2N beer over time

Beer sample from malt with different LOX level

- Introduction to malt-derived staling mechanisms
- Impact of thermal load
- Lipoxygenase (LOX) in malt and impact on beer T2N

13

- Amino acids and Strecker Degradation
- Summary Balancing acts in malting

Simplified mechanism of Strecker Degradation of amino acids

Schonberg et al., 1952; Barišić et al., 2019. Courtesy X. S. Yin -©ASBC

S-Containing AA, e.g. cysteine and cystine, form H₂S, NH₃ etc.

Examples of Strecker Degradation of amino-acids and resultant flavor compounds

Amino acid	Strecker aldehyde	Threshold (ppb)	Odor characteristics
Alanine	Acetaldehyde	10,000 (1,114) ^c	Pungent, sweet, green apple
Leucine	3-Methylbutanal	600 (56) ^c	Acrid-pungent, fruity/ pleasant at very low concentration. Toasted bread. Malty, chocolate, almond, cherry
Phenylalanine	(indirectly) Benzaldehyde	2,000 (515) ^c	Almond, cherry, stone fruit
Methionine (S- containing)	Methional	250 (4.2) ^c	Onion-meat-like, cooked potato, worty
Proline	Pyrrolidine, 1- pyrroline, (Non Strecker aldehyde)	20,000	Bread-like, seaweed-like, cooked rice or popcorn

Catalyzed by diketones with indirect need for O2, favored by high temperatures and high pH (4.3 - 4.6) of the beer and may happen in the bottle even at room temperature. *Meilgaard, 1975; Ho, 1996; Shahidi et al., 1998;* ^cSaison et al 2009

Wort free-radical level (EPR) for different malts

Malting process can lead to different EPR response levels. Degree of protein solubilization impacts the free radical levels.

Malt with high soluble nitrogen (FAN >230ppm) exhibited high intensity in free radical generations during incubation in EPR measurement. Malt samples: high-soluble nitrogen Harrington (#4-5), regular malts (FAN <190ppm) from AAC Metcalfe (#2-3), CDC Copeland (#8-9), and Harrington (all others). (Yin 2012)

Flavor stability sensory and beer analysis

Amino acids in commercial beers

Edwards WBC 2016

-Amino acid levels vary from 1000mg/L in commercial light beers to 5000 mg/L in specialty/craft beers

-Strecker amino acids (Alanine and phenylalanine) present in significant levels!

Amino acids in pilot brewed beers (3 hl brewhouse) (Updated from Tynan et al. 2018)

		In	Pilot Brewed	Beer (OG ~	11.5	5 °Ρ), in μm	ol/L	1		1
Synergy										
Synergy										
Pinnacle										
Moravian										
Metcalfe										
Genesis										
Explorer										
Copeland										
	0	5000	10000) 15	5000	200	000	25000)	30000
 Aspartic Aci Threonine Tryptophan 	id	 Glutamic Acid Arginine Phenylalanine 	 Asparagine Alanine Isoleucine 	SerineTyrosineLeucine		GlutamineCysteineLysine	 Histidine Valine Proline 	9	 Glycine Methionii 	ne

Most residual amino acid is proline which could further react to form flavor active compound (bread-like) in beer. Alanine is left in considerable level which could form acetaldehyde through Strecker Degradation.

Varieties like Genesis, Explorer, Copeland resulted low total residual amino acids

Functions of Free Amino Nitrogen

How much FAN does yeast need?

TABLE 8.3. Studies on increasing free amino nitrogen (FAN) requirement as the gravity of the wort increases^a

Wort gravity	Optimal FAN (mg/L)	Equivalent of FAN in mg/L/°P ^b	Reference		
12 °P	160	13.3	Casey and Ingledew, 1986		
18 °P	280	15.5	Casey and Ingledew, 1986		
20 °P	350	17.5	McCaig et al., 1992		
^a Courtesy X. S. Yin—© ASBC.					

Methional levels in fresh and force-aged lager samples*

*Methional - Meaty/cooked potato notes

Bench fermented; force ageing at 70 °C for 12 hrs

- Introduction to malt-derived staling mechanisms
- Impact of thermal load
- Lipoxygenase (LOX) in malt and impact on beer T2N
- Amino acids and Strecker Degradation
- Summary Balancing acts in malting

Side effects and balancing acts in managing malting to improve flavor stability of consequent beers

Mechanism involved	Preventative measure on malt	Side effect and balancing act
Thermal-load promoted formation of furfural and HMF	Control curing intensity of base malt (EPR and TBI)	Low heat in malt curing favors survival of undesirable LOX and peroxidases (POD). Balance of color and thermal-load in malt formulation in brewhouse
Strecker degradation of amino acids	Target FAN level starting from barley protein and proteolysis in malting	Watch the malt FAN, particularly for all- brewing, but balance with low β-glucan content

Side effects and balancing acts in managing malting to improve flavor stability of consequent beers ... Continued

Mechanism	Preventative measure	Side effect and balancing act
I OX-catalyzed	Low LOX and POD	Malt curing at high temperature induces high
formation of trans-	genotypes of barley	color and thermal load reduces other
2-nonenal (T2N)	generypes of barrey	desirable enzymes like amylases and
precursors	Intensive curina	consume high energy Control denth of
precursors	incensive curing	malt hed in kilning and denature LOX and
	Adoquato malt aging	POD at oncet of maching
	Adequate mait aying	rod at onset of mashing
	Control radical	Changing heating patterns may lead to
	development in color	flavor deviation. Achieve the color target
	production process,	with low potential of free-radical in malt.
Free radical	particularly in specialty	
catalyzed oxidation	malt roasting.	Optimize malt formulation between base
of unsaturated		malt and color malt to produce target
fatty acids	Monitor the extractable	color but with low values for thermal-
	iron in malt	load indicators (TBI or EPR)

Resources

- Aron, P. and Yin, X. S. 2019. Craft Brewers Conference, Denver,, 2019.
- Baert, J.J., et al. 2012. J. Agric. Food Chem., 60, 11449–11472. dx.doi.org/10.1021/jf303670z.
- Bamforth, C. W., and Lentini, A. 2009. The flavor instability of beer. Pages 85–109 in: Beer: A Quality Perspective. C. W. Bamforth, ed. Academic Press, Boston, MA.
- Browers, M., and Yin, X. S. 2010. ASBC Annual Meeting. Poster 59.
- Casey, G. P., and Ingledew, W. M. M. 1986. Ethanol tolerance in Yeasts, Crit. Rev. Microbiol. 13(3): 219–280.
- Cohen, J. A. 2016. Proc. World Brew. Congr. Poster 76.
- Drost, B. W., et al. 1990. J. Am. Soc. Brew. Chem. 48:4, 124-131, DOI: 10.1094/ASBCJ-48-0124.
- Edwards, J. C. 2016. Proc. WBC 2016, Denver, Poster #77.
- Foster, R. T., II. 2022.. MBAA Tech. Q. 59: 32-37
- Ghani, M.A., et al. 2017. Food Chemistry, 230: 195-207,
- Guido, L. F., et al. 2005. Eur. Food Res. Technol. 220:200–206. DOI 10.1007/s00217-004-1079-y.
- Hirota, et al. 2006. MBAA Tech. Q. 43:131–135.
- Ho, C. -T. 1996. Thermal generation of Maillard aromas. Pages 27–53 in: The Maillard Reaction: Consequences for the Chemical and Life Sciences. John Wiley & Sons, Chichester, U.K.
- Marques, L., et al. 2017. J. Am. Soc. Brew. Chem. 75(1):35–40.
- McCaig, R., et al 1992. J. Am. Soc. Brew. Chem. 50:18–25.
- Meilgaard, M. C. 1975. MBAA Tech. Q. 12:151–168.
- Monsour, R., et al. 2019. Proc. Am. Soc. Brew. Chem. Poster 77.
- Saison, D., et al 2009. Food Chem. 114, 1206–1215.
- Shahidi, F. 1998. *Flavor of Meat, Meat Products, and Sea-Foods, 2nd ed. Blackie Academic and Professional, London.*
- Tynan, S., et al. 2018. Proc. Brewing Summit 2018. Poster A-084.
- Uchida, M., and Ono, M. 1996. J. Am. Soc. Brew. Chem. 54(3) 198-204.
- Yin, X. S., et al.2022. Proc. 37th EBC, Madrid. Oral presentation.

26

What is the leading staling manifestation in my beer and mechanism behind, hence what in the malt I shall start to control?

ONE THING That You'll Apply

27

Acknowledgements

- Rahr Corporation/Rahr Malting Co./BSG
- Colleagues at Rahr Technical Center, including former colleagues Dr. P. Aron and R. Monsour
- Technical colleagues at Prairie Malt, Cargill Malt, SABMiller
- Collaborative colleagues at Asahi Breweries and Paul Sadosky and Roman Ortiz at Molson Coors
- Dr. David Barr Bruker (EPR support)
- American Soc. Brew. Chem. (ASBC)

technicalservices@rahr.com

website: https://bsgcraftbrewing.com/rahrtechnical-center/

