Improving Global Beer Quality Through Fermentation Control & Consistency

Kristopher Scholl Global VP Brewing, Quality & Raw Material Operations Anheuser-Busch InBev

UNITED WE BREW

Objectives

- Why Focus on Fermentation Control & Consistency?
- Practical Approach using DMAIC Methodology
- Managing Across Multiple Brewing Locations
- Q&A

Question: What % of a Beer's Flavor is Attributed to Fermention vs. Brewhouse and Filtration?

Go to www.pigeonhole.at

Question: What % of a Beer's Flavor is Attributed to Fermention vs. Brewhouse and Filtration?

Why Focus on Fermentation Control & Consistency?

Significant impact on overall sensory perception

- Aroma
 - Alcohols, Sulfurs, Esters, VDK's, Aldehydes, etc.
- Body/Mouthfeel
 - CO2, RDF, Attenuation, Astringency, pH
- Appearance
 - Foam, Haze, Particulates

- Freshness & Flavor Stability

Reduction of Carbonyls, SO2

Why Focus on Fermentation Control & Consistency?

Operational Considerations

- Capacity
 - Overall Fermentation and Maturation Time
 - Fermenter Volume Utilization

– Extract Recovery

- Yeast Flocculation & Recovery
- Over-foaming

– Consistency and Repeatability

- Single Brewery Batch to Batch Consistency
- Multiple Brewery Brand Consistency
- Ideal for Process Improvement and Optimization

Our Continuous Improvement Approach

- Lean Six Sigma Problem Solving Methodology
- More advanced form of PDCA (Plan, Do, Check, Act)
- D Define
- M Measure
- A Analyze
- I Improve
- C Control

QUICK PRIMER ON DMAIC

Define The Problem and Scope

Define The Problem and Scope (Key Drivers)

Define The Problem and Scope

Narrowed Focus Areas to Three Blocks to Improve Fermentation Consistency:

11

<u>Measure</u> – The Fermentation Consistency Index

- FCI developed to drive consistency in the fermentation process
- Process Indicators (PI's) within FCI are highly related

to the brewer's involvement and basic understanding of the fermentation process.

- Only 2 PI's (YCC and FAN) requires laboratory support.
- FCI Policy, calculation tool and training material for brewers were developed.

Analyze – Global Consolidated FCI Scores

	Fermentation Consistency Index Dashboard											
					Yeast							
	OG at		YCC at		Storage	Yeast Storage		Fermentation				
Zone	fill	T at fill	fill	YACT	Temp	Time	AE @ 72hrs	Velocity	FAN Uptake	FCI	Benchmark	
Zone 1	86.03%	79.15%	3.98%	5.85%	48.55%	66.11%	55.53%	62.93%	75.00%	52.31%	100%	
Zone 2	43.71%	35.08%	15.42%	7.83%	97.33%	89.25%	54.92%	56.25%	0.00%	40.37%	100%	
Zone 3	37.67%	34.00%	0.00%	0.00%	21.00%	100.00%	20.00%	54.33%	17.67%	31.63%	100%	
Zone 4	35.60%	29.90%	12.65%	6.94%	34.33%	77.16%	40.07%	73.31%	83.84%	43.93%	100%	
Zone 5	89.18%	63.21%	9.28%	6.97%	59.71%	98.19%	63.10%	62.56%	65.40%	55.30%	100%	
Zone 6	44.42%	63.48%	7.65%	8.03%	71.47%	87.36%	22.53%	54.62%	46.69%	40.50%	100%	
Global	56.10%	50.80%	8.16%	5.94%	55.40%	86.35%	42.69%	60.67%	48.10%	44.01%	100%	

FCI calculation:

Fermentor	Brand	OG at	T at	YCC	Air	Yeast	Yeast	AE@	Fermentation	FAN	FCI
		Fill	Fill	at fill	Injection	storage	Storage	72 h	Velocity	Uptake	(%)
No		(10%)	(10%)	(10%)	& YACT	Temp.	time	(10%)	(10%)	(15%)	
					(15%)	(10%)	(10%)				

- Results confirm initial predictions!
- 2 critical control points Air injection control, Pitching rate and yeast growth are the biggest gap.
- 4 control points OG at fill, T at fill, Yeast storage temp and Yeast storage time do not require capex and are simple to correct.

Improve – Increase Technical Knowledge

Improve: FCI | Implementation Example – Middle America Zone

15

Improve: FCI | Cascade to Breweries

16

Control: Tracking & Monitoring

Fermentation Consistency Index

Improvement in 3 Parameters: OG at Fill, Temp at Fill, and Yeast Storage Temperatures

Results: Global Beer Sensory Scores Improving!

Key Take-Aways

- Leverage Sensory Program to Drive Continuous Improvement
- Consistent Inputs + Consistent Outputs = Consistent Fermentations
- Technical Knowledge + Define Equipment + Standardize How to Measure
- Utilize Proven Problem Solving Methodologies DMAIC
- Tracking and Monitoring Process Indicators (PI's) is critical for "Control" and Continuous Improvement
- Keep it Simple and Understandable
- Be Sure Teams Understand the "Why" Behind the "PI's"

Contact info: Kristopher.Scholl@AB-InBev.com

CHEERS!

Thank You

