It's a kind of magic...

I Canit Believe

iotransformation

Leandro Meiners

Providence, Rhode Island | August 14–16

About Me...

Head Brewer / Co-Host / Author

- PLACEBO BREWING
- BIRRATECNIA (PODCAST)
- ZYTHOLOGIA (BLOG)
- SKEPTICAL BREWING (ZYMURGY COLUMN)

AGENDA

- Different types of *biotransformation*, and what is *KNOWN* for each one of them:
 - Monoterpenes
 - Glycosides
 - Esters
 - Thiols
- If not... then what?
- Key takeaways

BIOTRANSFORMATION: Intro & Types

Transformation of a compound (present in the wort or beer), by means of a microorganism, which has an impact in the taste / aroma.

BIOTRANSFORMATION: Monoterpenes

King & Dickinson, (2003)

BIOTRANSFORMATIO OF MONOTERPENES: Impact of Hop Addition Timing

- Geraniol a content in beer can be increased by dry-hopping later in the fermentation process
- Linalool levels are constant regardless of the timing of hop addition
- β-citronellol content (produced by biotransformation) does not depend on the time of hop addition and continues to occur even after packaging

BIOTRANSFORMATION OF MONOTERPENES – Is There Consensus?

BIOTRANSFORMATION: GLYCOSIDES

Glycosides are *non-aromatic molecules* where a *sugar* is *linked* to *another functional group* (plants generate them to store and transport energy)

For example:

The functional group can be released by the action of the *yeast* (or *enzyme*)

BIOTRANSFORMATION OF GLYCOSIDES – Can Yeast Do It Without Extra Help?

Tracking the release, of an "*artificial*" (aka not present in beer) *glycoside* during *fermentation*:

Conventional yeasts

 (regardless of high or low β-glucosidase activity)
 could NOT release more than 10% of the glycoside

 Only way to significantly "release" was using added enzymes

BIOTRANSFORMATION: ESTERIFICATION

Yeast-generated esters are produced by **metabolizing** an organic **acid** and an **alcohol**.

Two major *classes* of *esters* generated by *yeast* secondary metabolism :

- Ethyl esters
- Acetate esters

Ethyl acetate \downarrow_{0} Phenyl ethyl acetate \downarrow_{0} Ethyl caproate \downarrow_{0} \downarrow_{0} $\downarrow_$

BIOTRANSFORMATION OF ESTERS – Impact Due To Timing Of Hop Addition

- Ethyl esters: higher concentration when dry hopping on transfer to fermenter (aka "dip-hopping")
- Geranyl esters higher concentration when dry hopping cold (post-fermentation)

BIOTRANSFORMATION: THIOL PRECURSORS

Thiol precursors are non-aromatic

Identified thiol precursors in beer come from:

- Hops: (Gros et al., 2012) & (Roland et al., 2016)
- *Malt*: (Dagan et al., 2016)

Thiols have extremely low perception thresholds: (Swiegers & Pretorius, 2007)

BIOTRANSFORMATION OF THIOL PRECURSORS -Yeast Selection Based On Genetic Profiling

Conventional yeast strains:

- Interact differently with different thiols
- Low conversion rates for thiol precursors

BIOTRANSFORMATION: How Much of an Impact Can it Really have

TYPE OF BIOTRANSFORMATION	SENSORY THRESHOLD LEVELS	QUANTITY OF PRECURSORS	CONVERSION LEVELS
MONOTERPENES	Geraniol ~ 53 ppm Linalool ~ 9 ppm Citronellol ~ 25 ppm Nerol ~ 500 ppm	Citra: (Late Hopping @ 1 g/L) Linalool ~ 75 ppm Geraniol ~ 16 ppm Citronellol ~ 18 ppm	Unknown %
GLYCOSYDES (MONOTERPENES)		Simcoe: (In spent hops @ 50 g/L) Linalool ~ 18 ppm Geraniol ~ 25 ppm Citronellol ~ 1 ppm	~ 10 %

BIOTRANSFORMATION: How Much of an Impact Can it Really have

TYPE OF BIOTRANSFORMATION	SENSORY THRESHOLD LEVELS	QUANTITY OF PRECURSORS	CONVERSION LEVELS
ESTERS	Ethyl 3-methyl butyrate ~ 7 ppm (Ethyl Ester Formation) Geraniol ~ 53 ppm (Ester Hydrolysis) geranyl isobutyrate ~ 45 ppm	Isobutyric acid ~ 4-8 ppm (commercial lager beers) Geranyl isobutyrate ~ 1.5% hop oil (Cascade) – For ref. linalool was 0.85%. Geranyl acetate ~ 170 ppm/L (DH with Cascade)	Geranyl to Geraniol ~ 15%
THIOLS	4MMP ~ 4 ppb 3MH ~ 55 ppb	Mosaic: [C3MH] ~ 170 [CG3MH] ~ 510 [G3MH] ~ 3400 For comparison: [3MH] ~ 25 ppb/g	~ 0.1–0.5%

BIOTRANSFORMATION: Is It Responsible For The Profile Change Of Mid-fermentation Dry Hopping

TYPE OF BIOTRANSFORMATION	SENSORY THRESHOLD LEVELS	CONTRIBUTION OF THIS BIOTRANSFORMATION TYPE TO BEERS TROPICAL PROFILE	IMPACT OF TIMING OF HOP ADDITION (HINT, HINT: PROCESS CHANGE)
MONOTERPENES	MODERATE/HIGH	LOW	NO IMPACT
GLYCOSYDES (MONOTERPENES)	MODERATE/HIGH	VERY LOW	NO STUDIES
ESTERS	MODERATE/HIGH	MEDIUM TO LOW	
THIOLS	EXTREMELY LOW	HIGH	NO STUDIES

SO... EARLY/MID-FERMENTATION DRY HOPPING DOES NOTHING?

BIOTRANSFORMATION: If Not, What Else ?

Removal of highly volatile compounds (generally with a herbal profile), due to:

- CO2 evolution (Haefliger, 2013)
- Absorption on yeast's cell walls (Kishimoto, 2013)

Non-yeast mediated hydrolysis of esters (Forster, 2014)

(Noro, 2015): Showed the use of "dead" yeast to remove compounds with an herbal profile

The earlier the dry hopping, the greater the removal of Myrcene:

Hot off the bench...

Fermenter with Control beer (just hops)

Fermenter with the addition of baker's yeast

Fermenter with the CO₂ evolution mimicking

Fermenter with addition of yeast & CO₂ evolution mimicking

Triangle Test Results

	Yeast Tasting	CO ₂ tasting	Yeast + CO ₂ Tasting
# Participants	28	27	28
# Correct answers	17	24	23
Significant?	YES (value p = 0.003)	YES (value p = 0.00000003)	YES (value p = 0.00000015)
Preference (only for correct answers)	Control = 0 Yeast = 9 No Preference = 8	Control = 11 $CO_2 = 3$ No Preference = 10	Control = 3 CO_2 + Yeast = 12 No Preference = 8

Conclusions

- Both Yeast and CO₂ make an impact on resulting hop expression
- Most tasters prefer samples with Yeast
- Common reasons for preferring samples with yeast (just yeast and Y+CO₂) were:
 - More "tropical"
 - Fruiter ("sweet fruit")
 - "Fresh hop" aroma
 - More intense aroma
- For Control vs CO₂, were preference was with Control reasons were more herbaceous, floral, "balanced" aroma. Yet the few who chose CO₂ stated more "tropical" and fruiter.

MAIN TAKEOUTS

- SOME TYPES OF BIOTRANSFORMATION <u>DO NOT</u> HAVE A HIGH IMPACT (MONOTERPENES / GLYCOSIDES)
- EARLY / MID FERMENTATION (HIGH KRAUSEN) DRY HOPPING HAS A SENSORY IMPACT, BUT IT IS <u>NOT PROVEN</u> THAT IT IS DUE TO BIOTRANSFORMATION (AND SEEMS VERY UNLIKELY)
- SENSORY CHANGE OF EARLY / MID FERMENTATION (HIGH KRAUSEN) DRY HOPPING IS MORE LIKELY DUE TO YEAST AND CO₂ SCRUBBING.
- OUR EXPERIENCE ADDS WEIGHT TO THE ANALYSIS THAT BIOTRANSFORMATION IS NOT RESPONSIBLE FOR EARLY DRY HOPPING

THANK YOU!

Belda, I., Ruiz, J., Esteban-Fernández, A., Navascués, E., Marquina, D., Santos, A., & Moreno-Arribas, M. (2017). Microbial Contribution to Wine Aroma and Its Intended Use for Wine Quality Improvement. Molecules, 22(2), 189. https://doi.org/10.3390/molecules22020189

Dagan, L., Delpech, S., Reillon, F., Roland, A., Schneider, R., & Viel, C. (2016). First evidence of cysteinylated and glutathionylated precursors of 3-mercaptohexan-1-ol in malts: Toward a better aromatic potential management? World Brewing Congress.

http://www.worldbrewingcongress.org/congress/Abstracts/Pages/143.aspx

Darriet, P., Tominaga, T., Lavigne, V., Boidron, J.-N., & Dubourdieu, D. (1995). Identification of a powerful aromatic component ofVitis vinifera L. var. sauvignon wines: 4-mercapto-4-methylpentan-2-one. Flavour and Fragrance Journal, 10(6), 385–392. https://doi.org/10.1002/ffj.2730100610

Gros, J., Nizet, S., & Collin, S. (2011). Occurrence of Odorant Polyfunctional Thiols in the Super Alpha Tomahawk Hop Cultivar. Comparison with the Thiol-rich Nelson Sauvin Bitter Variety. Journal of Agricultural and Food Chemistry, 59(16), 8853– 8865. https://doi.org/10.1021/jf201294e

Gros, J., Peeters, F., & Collin, S. (2012). Occurrence of Odorant Polyfunctional Thiols in Beers Hopped with Different Cultivars. First Evidence of an S-Cysteine Conjugate in Hop (Humulus lupulus L.). Journal of Agricultural and Food Chemistry, 60(32), 7805–7816. https://doi.org/10.1021/jf301478m

Gros, J., Tran, T. T. H., & Collin, S. (2013). Enzymatic release of odourant polyfunctional thiols from cysteine conjugates in hop. Journal of the Institute of Brewing, 119(4), 221–227. https://doi.org/10.1002/jib.80

Kishimoto, T., Kobayashi, M., Yako, N., Iida, A., & Wanikawa, A. (2008). Comparison of 4-Mercapto-4-methylpentan-2-one Contents in Hop Cultivars from Different Growing Regions. Journal of Agricultural and Food Chemistry, 56(3), 1051–1057. https://doi.org/10.1021/jf072173e

Kishimoto, T., Morimoto, M., Kobayashi, M., Yako, N., & Wanikawa, A. (2008). Behaviors of 3-Mercaptohexan-1-ol and 3-Mercaptohexyl Acetate during Brewing Processes. Journal of the American Society of Brewing Chemists, 66(3), 192–196. https://doi.org/10.1094/asbcj-2008-0702-01

Liu, C.-J., Jia, J.-Y., Wang, H.-Y., Xue, L.-L., Kong, Y., & Wang, F.-X. (2016). Purification and characterization of a flavor-related enzyme, γ-glutamyl-transpeptidase, fromToona sinensisleaves. The Journal of Horticultural Science and Biotechnology, 91(6), 611–618. https://doi.org/10.1080/14620316.2016.1206455

Matsche, B., Munoz, I. A., Wiesen, E., Schonberger, C., & Krottenthaler, M. (2018). The influence of yeast strains and hop varieties on the aroma of beer. BREWING SCIENCE, 71, 31--38.

Michel, M., Haslbeck, K., Ampenberger, F., Meier-Dörnberg, T., Stretz, D., Hutzler, M., Coelhan, M., Jacob, F., & Liu, Y. (2019). Screening of brewing yeast β-lyase activity and release of hop volatile thiols from precursors during fermentation. BrewingScience, 11/12.

Swiegers, Jan H., Capone, D. L., Pardon, K. H., Elsey, G. M., Sefton, M. A., Francis, I. L., & Pretorius, I. S. (2007). Engineering volatile thiol release inSaccharomyces cerevisiae for improved wine aroma. Yeast, 24(7), 561–574. https://doi.org/10.1002/yea.1493

Reglitz, K., Lemke, N., Hanke, S., & Steinhaus, M. (2018). On the Behavior of the Important Hop Odorant 4-Mercapto-4-methylpentan-2-one (4MMP) during Dry Hopping and during Storage of Dry Hopped Beer. BREWING SCIENCE, 71, 96--99.

Roland, A, Delpech, S., & Dagan, L. (2017). A Powerful Analytical Indicator to Drive Varietal Thiols Release in Beers: The" Thiol Potency". BREWING SCIENCE, 70, 170--175.

Roland, A., Viel, C., Reillon, F., Delpech, S., Boivin, P., Schneider, R., & Dagan, L. (2016). First identification and quantification of glutathionylated and cysteinylated precursors of 3-mercaptohexan-1-ol and 4-methyl-4-mercaptopentan-2-one in hops (Humulus lupulus). Flavour and Fragrance Journal, 31(6), 455–463. https://doi.org/10.1002/ffj.3337

Steinhaus, M., Wilhelm, W., & Schieberle, P. (2006). Comparison of the most odouractive volatiles in different hop varieties by application of a comparative aroma extract dilution analysis. European Food Research and Technology, 226(1–2), 45– 55. https://doi.org/10.1007/s00217-006-0507-6

Swiegers, J. H., & Pretorius, I. S. (2007). Modulation of volatile sulfur compounds by wine yeast. Applied Microbiology and Biotechnology, 74(5), 954–960. https://doi.org/10.1007/s00253-006-0828-1

Takoi, K., Degueil, M., Shinkaruk, S., Thibon, C., Maeda, K., Ito, K., Bennetau, B., Dubourdieu, D., & Tominaga, T. (2009b). Identification and Characteristics of New Volatile Thiols Derived from the Hop (Humulus luplusL.) Cultivar Nelson Sauvin. Journal of Agricultural and Food Chemistry, 57(6), 2493–2502. https://doi.org/10.1021/jf8034622

Takoi, K., Itoga, Y., Takayanagi, J., Matsumoto, I., & Nakayama, Y. (2016). Control of hop aroma impression of beer with blend-hopping using geraniol-rich hop and new hypothesis of synergy among hop-derived flavour compounds. BrewingScience, 69, 85--93.

Thibon, C., Cluzet, S., Mérillon, J. M., Darriet, P., & Dubourdieu, D. (2011). 3-Sulfanylhexanol Precursor Biogenesis in Grapevine Cells: The Stimulating Effect ofBotrytis cinerea. Journal of Agricultural and Food Chemistry, 59(4), 1344–1351. https://doi.org/10.1021/jf103915y

Tominaga, T., Niclass, Y., Frérot, E., & Dubourdieu, D. (2006). Stereoisomeric Distribution of 3-Mercaptohexan-1-ol and 3-Mercaptohexyl Acetate in Dry and Sweet White Wines Made fromVitis vinifera(Var. Sauvignon Blanc and Semillon). Journal of Agricultural and Food Chemistry, 54(19), 7251–7255. https://doi.org/10.1021/jf061566v

Vermeulen, C., Lejeune, I., Tran, T. T. H., & Collin, S. (2006). Occurrence of Polyfunctional Thiols in Fresh Lager Beers. Journal of Agricultural and Food Chemistry, 54(14), 5061–5068. https://doi.org/10.1021/jf060669a

/Further Avenues of Research

Icons can be recolored using shape fill. Icons can be used with yellow hex shape (center vertically & horizontally with shape then group). To resize icon and/or shape, use the shift key to keep the original proportions.

