Characterizing the impact of packaging type on beer stability using advanced analytical tools

BREWING SUMMIT 2022 Providence, Rhode Island | August 14–16

> That's me!----->

- Technical Brewing Projects Coordinator Brewers Association (2022)
- Quality Laboratory Director
 Colorado State University/FST
- Graduate Student
 CSU (2019-2022)
 - Presenting on thesis work
- Quality Lab Manager
 Oskar Blues Brewery, Longmont, CO
 - "First craft beer in a can"

2

Presentation Roadmap

- 1. Background
- 2. Research Questions
- 3. Methods
- 4. Results
- 5. Q&A

Background

4

STABILITY MATTERS!

5

Current literature lacks thorough understanding of beer stability for today's brewing industry.

Ongoing Shift to Cans BA Craft, Can Share by Year and 4 Wk Period 70% 60% 50% 40% 30% 20% 10% 0% -2018 -2019 - 2020 - 2021Source: IRI Group, Total US, MULO+C+Total Liquor; Brewers Association Analysis

www.brewersassociation.org/insights/craft-beer-packaging-trends-recap-2021/

- Stability research is not relevant to modern beer matrix
 - Light lager
 - **Style innovation** = changing matrix
- Shift in shares to cans
- No direct can vs. bottle stability comparison
 - Known package differences
 - Anecdotal claims

Research Questions

Question 1

Are there differences in the chemical profiles of beer aged in cans vs. bottles?

Question 2

If so, does style impact the differences observed?

Question 3

What mechanisms might be driving the differences?

Methods

Study Design & Sampling

Non-Targeted GC-MS Approach for Chemical Detection

- Detect metabolites = chemical compound
- Headspace and direct injection GC-MS
 - Volatile and small polar non-volatile compounds

Non-targeted

- We don't know what we don't know
- Confidently identify specific compounds
- See how **chemical profiles** vary over time between package type and beer style
- Why?....to understand mechanisms of beer aging in different styles and package types

Use of metabolomics (small molecules) workflow

Results

17 Metabolites of Interest

Subclass	Metabolite	Sensory Attribute
Amino acids	Glycine	NA
	Tyrosine	NA
	Asparagine	NA
Carboxylic acid ester	Ethyl Acetate	nail polish remover, solvent, fruity, sweet
	Isobutyl isobutyrate	grape skin, pineapple, tropical
Fatty acid ester	Ethyl decanoate	caprylic, soapy, estery
	Ethyl octanoate	apple, sweet, fruity, sour apple
	Ethyl hexanoate	apple, anise seed, citrus, solvent
	2-Methylbutyl butyrate	fruity, pear, apricot, tropical, spicy, apple
Monoterpene	Pinocarvone	minty
	β-myrcene	spicy, citrus, resinous, piney, lemon, woody
	β-pinene	woody, green, resinous, dry
Sesquiterpene	Humulene	spicy, herbal, grassy, woody, clove
	α-calacorene	citrus, spicy, woody
Alcohol	Isobutanol	malty, solvent
	myo-Inositol	NA
Carbonyl	2-Undecanone	varnish, bitter, green plants, geranium, fruity, citrus

PCA model shows classification of samples by beer style

 $R^2 = 0.867$

MULTIVARIATE ANALYSES

- Overall variation in 2D
- Points close together = more similar
- PCA Principal components analysis
- R² = Model fit
- **PLS-DA** Partial least squares discriminant analysis
- Q² = Model predictability

PLS-DA models show package predictability is style dependent

PLS-DA of India Pale Ale PLS-DA of Amber Ale 8 6 4 PC2 (11.4%) PC2 (7.48%) Bottle Can -4 -6 -6 -10 -6 -4 -2 10 -8 -2 2 -6 -4 0 PC PC1 (7.53%) $R^2 = 0.981$ $R^2 = 0.667$

 $R^2 = 0.981$ $Q^2 = 0.964$

Q²=0.115

Bottle

Can

Baseline differences explain part of amber ale variation

Total=17

Metabolite	Baseline*
Glycine	<mark><0.001</mark>
Tyrosine	<mark><0.001</mark>
Asparagine	<mark><0.001</mark>
Ethyl acetate	0.21
lsobutyl isobutyrate	<mark><0.001</mark>
Ethyl decanoate	<mark><0.001</mark>
Ethyl octanoate	0.06
Ethyl hexanoate	0.74
2-Methylbutyl butyrate	<mark><0.001</mark>
Pinocarvone	0.33
β-myrcene	0.76
β-pinene	0.41
Humulene	<mark><0.001</mark>
a-calacorene	0.47
Isobutanol	0.43
myo-Inositol	<mark><0.001</mark>
2-Undecanone	0.50

*P-values derived from emmeans()

17

Amino acid baseline levels are lower in AA bottles

Amino Acid Baseline Difference

Gly = glycine, Try = tyrosine, Asp = asparagine *** indicates P < 0.001 • Amino acids can **adsorb** to glass

 Amino acids are a substrate for staling compounds (Strecker aldehydes)

Amber ales packaged in cans could be more susceptible to increased staling compounds

Significant changes of metabolites over time by sample treatment and subclass

*** Estimated marginal means of linear trends, $P \le 0.05$

12000 ¬

_

Humulene

19

C

20 ¬

Humulene decreases significantly more in bottles than in cans in both styles

Proposed flavor scalping mechanisms

Metabolite interactions with packaging environment

Metabolite chemical properties influence package type effects over time

Evidence of hop terpene formation or release during beer storage depends on package type

ANOVA P < 0.001

Main Takeaways

"10,000-foot view"

What we learned...

1. Package type predictability was style dependent.

- 2. Baseline differences between cans and bottles drove variation in AA samples.
- 3. Evidence amino acids were lower in AA bottles due to adsorption.
- **4.** Evidence **hop terpenes** are interacting with **packaging materials** and their chemical properties impact those effects.
- **5.** This work **scratches the surface** of packaging effects on beer stability. **More work is needed** to fully understand the mechanisms.

Industry Impacts & What Next?

- A "best package" for a particular style
 - Or not...
- Understand mechanisms and control those effects
- Targeted analysis
 - Amino acids, terpenes
 - Proposed mechanisms
- Liner composition
- Non-volatile fraction
- Expand range of styles
- Pair work with sensory

Resources

- Vanderhaegen, B., et al., *The chemistry of beer aging a critical review*. Food Chemistry, 2006. **95**(3): p. 357-381.
- You, X. and S.F. O'Keefe, *Binding of volatile aroma compounds to can linings with different polymeric characteristics*. Food Science & Nutrition, 2018. **6**(1): p. 54-61.
- Wietstock, P.C., et al., *Characterization of the Migration of Hop Volatiles into Different Crown Cork Liner Polymers and Can Coatings*. Journal of Agricultural and Food Chemistry, 2016. **64**(13): p. 2737-2745.
- Peacock, V.E. and M.L. Deinzer, *Fate of Hop Oil Components in Beer.* Journal of the American Society of Brewing Chemists, 1988. **46**(4): p. 104-107.
- Yao, L., et al., *Data Processing for GC-MS- and LC-MS-Based Untargeted Metabolomics*, in *High-Throughput Metabolomics*. 2019, Springer New York. p. 287-299.
- Broeckling, C.D., et al., *RAMClust: A Novel Feature Clustering Method Enables Spectral-Matching-Based Annotation for Metabolomics Data*. Analytical Chemistry, 2014. **86**(14): p. 6812-6817.
- Broeckling, C., et al., *RAMClustR: Mass Spectrometry Metabolomics Feature Clustering and Interpretation*. 2021: R package version 1.2.2.

AGRICULTURAL CHEMISTRY LABORATORIES COLORADO STATE UNIVERSITY

27

Email: katie@brewersassociation.org

Heatmap visualizes big picture relationships between style, package, time

Canning process may cause more ester volatilization in AA cans compared to bottles

Bottle

Ester Baseline Differences

Isobutyl isobutyrate, 2-methylbutyl butyrate, Ethyl decanoate *** indicates *P* < 0.001

- Esters driving variation in AA ullet
- Esters = volatile, fruity aromas
- Cans have larger opening
 - Increased volatilization and oxygen pick up
- Polyphenols from hops may be protective
 - Antioxidant •

Amber ales packaged in cans may be more susceptible to dampened aromas.

PLS-DA models show package predictability is style dependent

8-6 4 PC2 (11.4%) Bottle RA Can -4 -6--8 -4 -2 -10 -8 -6 6 10 PC

PLS-DA of Amber Ale

 $R^2 = 0.981$ $Q^2 = 0.964$