Workshop: August 15th, 3:30 pm-4:45 pm

- 3:30 Intro
- 3:35 Methods of Analysis Phil Chou
- 3:50 Hop Storage Index Mark Zunkel
- 4:05 Basics of Sensory Jeff Dailey
- 4:20 Sensory
- 4:40 Final words

Methods of Analysis: Alpha, Beta, Oil, HSI, & Advanced Methods for Oil Composition

Phillip Chou John I. Haas, Inc.

Outline

- Challenge
- Hop Chemistry
- Methods of Analysis
- Leaf Hops
- Pellets
- Extracts
- Oils

Sensory Evaluation

- Organoleptic & physical analysis delivers a general picture of:
 - ✓ Appearance/Color
 - ✓ Seed Content
 - ✓ Mixture of Different Varieties
 - ✓ Leaf Material
 - ✓ Foreign Matter
 - ✓ Aroma
 - ✓ Pests & Diseases

Bitterness Potential? Aroma Chemistry? Storage Stability?

Hop Chemical Content

<u>% w/w</u>

Alpha acids	2 - 18
Beta acids	1 - 10
Hop oils	0.5 - 3
Polyphenols	2 - 5
Waxes and Steroids	tr - 5
Proteins	15
Cellulose	40 - 50
Moisture	6 - 10
Monosaccharides	2
Pectins	2
Minerals (Ash)	10

- Bitterness
- Hop Aroma
- Microbiological Stability
- Foam Enhancement
- Contribution to body
 & mouthfeel of a beer
- Improvement of haze and flavour stability
- Differentiation of beer types and brands

Hop Quality Control

Alpha & Isoalpha Acids

Alpha Acids

Humulone Cohumulone Adhumulone

R

-CH₂CH(CH₃)₂ -CH(CH₃)₂ -CH(CH₃)CH₂CH₃

Isoalpha Acids

Isohumulone Isocohumulone Isoadhumulone

Lead Conductance

- Electromagnetic Method
 - ✓ Relatively "inexpensive"
 - ✓ Lead Acetate Titration + Conductance or Resistance measurements

American Society of Brewing Chemists, Hops 6 Method

Ultraviolet-Visible (UV-Vis) Spectroscopy

- Spectroscopic Method
 ✓ Rapid
 - Requires spectrophotometer purchase

Sample 1A Sample 2A Sample 3

High Performance Liquid Chromatography (HPLC)

- Chromatographic Method
 - ✓ Identify & quantify important hop compounds
 - ✓ Accurate
 - ✓ Expensive instrumentation

https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Analytical_Chemistry_2.1_(Harvey)/12_Chromatog raphic_and_Electrophoretic_Methods/12.2%3A_General_Theory_of_Column_Chromatography

10

https://www.uaex.uada.edu/farm-ranch/crops-commercial-horticulture/horticulture/ar-fruit-veg-nut-update-blog/posts/hops-drying-november-18-2019.aspx

Gas Chromatography (GC)

- Chromatographic Method
 - ✓ Identify & quantify hop aroma compounds
 - ✓ Accurate
 - ✓ Expensive instrumentation

https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Analytical_Chemistry_2.1_(Harvey)/12_Chromatog raphic_and_Electrophoretic_Methods/12.2%3A_General_Theory_of_Column_Chromatography

11

S. Raut et al. J. Sci Food Agric. 2020, 101, 2247.

Hop Analysis: Hop Storage Index (HSI)

Oxidized α & β Acids \frown

ASBC Hops 12 EBC 7.13

<u>HSI</u>

- 0.250 Typical of fresh hops
- 0.300 10% oxidized
- 0.400 25% oxidized
- 0.500 33% oxidized
- 0.700 50% oxidized

Hop Analysis: Hop Storage Index (HSI)

Oxidized α & β Acids \frown

ASBC Hops 12 EBC 7.13

<u>HSI</u>

- 0.250 Typical of fresh hops
- 0.300 10% oxidized
- 0.400 25% oxidized
- 0.500 33% oxidized
- 0.700 50% oxidized

Extract

Steam Distillation (ASBC Hops 13, EBC 7.10)
 ✓ Total Oils (ml/100 g)

- Gas Chromatography (ASBC Hops 17, EBC 7.12)
 - \checkmark Abundant Aroma Compounds
 - > Myrcene
 - Caryophyllene
 - > Linalool
 - > Humulene
 - > Geraniol
 - > Farnesene

Hop Quality Control

Hop Analysis: α **- &** β **-Acids**

Cones & Pellets

Lead Conductance
 ✓EBC 7.4/7.5, ASBC Hops 6
 ➢Lead Conductance Value %
 ~ α-Acids

Hop Analysis: α - & β -Acids

Cones & Pellets

- UV-Vis
 - ✓ ASBC Hops-6 (355, 325, 275 nm)
 - \succ % α -Acids
 - \succ % β -Acids

O. Kornysovaet al. Adv. Med. Sci. 2009, 54, 41.

Hop Analysis: α**- &** β**-Acids**

Cones & Pellets

- HPLC
 - ✓ ASBC Hops-14 (314 nm), EBC 7.7 (314 nm)
 N+-Adhumulone
 - > Humulone
 - Cohumulone
 - > Adhumulone
 - $\succ \beta$ -Acids

Hop Quality Control

Hop Analysis: α -Acids

Unisomerized Extract

 Lead Conductance
 ✓ ASBC Hops 8, EBC 7.6
 ➢ Lead Conductance Value % ~ α-Acids %

Hop Analysis: α -Acids

Unisomerized Extract

• UV-Vis
 ✓ ASBC Hops-8 (355, 325, 275 nm)
 ➢ % α-Acids

Hop Analysis: α**- &** β**-Acids**

Unisomerized Extract

- HPLC
 - ✓ ASBC Hops-14 (314 nm), EBC 7.7 (314 nm)
 - > Humulone
 - Cohumulone
 - > Adhumulone
 - $> \beta$ -Acids

Hop Analysis: Isoalpha Acids

Isomerized Extract

- UV-Vis
 - ✓ Maye, J. P., et al. *J. Am. Soc. Brew. Chem.* 2002, 60, 98.
 ➢ Isoalpha Acids (255 nm)

Hop Analysis: Isoalpha Acids

Isomerized Extract

- HPLC
 - ✓ ASBC Hops-9 (280 nm), EBC 7.9 (270 nm)
 - > Isohumulone
 - > Isocohumulone
 - Isoadhumulone
 - ✓ ASBC Hops-16, EBC 7.8 (314 & 280 nm)
 - Isohumulone
 - Isocohumulone
 - > Isoadhumulone
 - Alpha Acids
 - Beta Acids

Hop Quality Control

റ്

镃

Hop Analysis: Reduced Isoalpha Acids

Isomerized Light Stable Extract

- UV-Vis
 - ✓ Maye, J. P., et al. J. Am. Soc. Brew. Chem.
 2002, 60, 98.
 - *Rho*-isoalpha Acids (253 nm)
 - Tetrahydroisoalpha Acids (253 nm)
 - Hexahydroisoalpha Acids (253 nm)
 - ✓ ASBC Hops-18 (253 nm)
 - Tetrahydroisoalpha Acids

Hop Analysis: Reduced Isoalpha Acids

Isomerized Light Stable Extract

- HPLC
 - ✓ EBC 7.9 (270 nm)
 - Isoalpha Acids
 - > Rho-isoalpha Acids
 - > Tetrahydroisoalpha Acids
 - Hexahydroisoalpha Acids

Methods Evolution

GC-GC-Mass Spectrometry-Olfactometry (GC-GC-MS-O)

GC-Olfactometry (GC-O)

https://www.chromatographyonline.com/authors/dwight-r-stoll

GC-Olfactometry (GC-O)

https://www.chromatographyonline.com/authors/dwight-r-stoll

GC-GC-Mass Spectrometry-Olfactometry (GC-GC-MS-O)

• 2 Dimensional GC

GC-GC-Olfactometry (GC-GC-O)

https://www.chromatographyonline.com/authors/dwight-r-stoll

Summary

- Hops have rich chemical profiles
- Different ways to approach bitter and flavor compound analyses.
- Technology is continuing to evolve

Hop Storage Index (HSI): Influencing Factors

Mark Zunkel BarthHaas

Outline

- Hop Storage Index (HSI)
- Background and analysis
- Variety Dependance
- Storage bales and pellets
- Outliers
- Final words

Method to Analyse Hop Ageing

HSI is important to brewers as a quality indicator of hop harvesting, processing, handling, packaging and storage

- Spectrophotometric method (UV):
 - ASBC Hops 12 (6A)
 - EBC 7.13
 - MEBAK R-300.12.110
- a and β -acids \rightarrow Max. 325 nm
- Degradation/oxidation of a and $\beta\text{-acids}$ \rightarrow Max. 275 nm

$$HSI = \frac{A_{275 nm}}{A_{325 nm}}$$

Fig. 1. Alkaline methanol spectra of α -acids and β -acids from lupulin: a, HSI = 0.25; b, HSI = 0.69, c, HSI = 2.44.

37

HSI Classification

HSI	Transformation	Aging Degree
≤0.250	0	Very fresh
≤0.310	≤10%	Freshly picked
0.310-0.400	10-21%	Hops of normal storage and processing
0.400-0.500	21-31%	Old Hops
0.500-0.600	31-39%	Very old Hops
>0.600	>39%	Expired hops

Growing/harvesting conditions

Processing from whole cones to pellets

Storage until addition to brewing process

Harvest Year and Hop Variety Dependent

Hop Variety Dependent

Average, minimum and maximum of eleven hop varieties grown in the United States from 2009-2019.

	Ave.	Min.	Max
Cascade	0.239	0.188	0.363
Cenntenial	0.239	0.188	0.363
Chinook	0.263	0.213	0.412
Citra	0.271	0.224	0.351
Mosaic	0.266	0.236	0.316
Willamette	0.279	0.210	0.370
Zeus	0.269	0.226	0.406
Nuqaet	0.264	0.236	0.304
Summit	0.276	0.240	0.385
Columbus	0.269	0.223	0.374
Sabro	0.261	0.235	0.297

Average, minimum and maximum of sixteen European hop varieties from 2009-2019.

	Ave.	Min.	Max.
Hallertau Mittelfrüh	0.264	0.189	0.353
Hersbrucker	0.240	0.178	0.312
Tettnang Tettnanger	0.261	0.213	0.318
Spalter Select	0.273	0.192	0.348
Tradition	0.253	0.198	0.313
Saphir	0.291	0.219	0.366
Perle	0.275	0.227	0.350
Northern Brewer	0.288	0.239	0.361
Hallertau Magnum	0.259	0.232	0.324
Taurus	0.274	0.246	0.302
Herkules	0.267	0.238	0.309
Czech Saaz	0.286	0.208	0.391
Aurora	0.317	0.250	0.358
Celeia	0.374	0.272	0.575
Lubliner	0.319	0.215	0.413
Marynka	0.316	0.258	0.401

HSI during storage -Bales

- Packaged in woven polypropylene bales
- Oxygen permeable
- Storage at cold temperatures remain stable

Storage of Bales

HSI of packaged pellets

- Storage in inert gas (CO₂ and/or N_2)
- Very low oxygen content (<2%) in soft packs
- Degradation of aroma and bitterness compounds
- Cold temperatures keep valuable components stable

Storage pellets over three years

Degradation over time

• Aged hops ≠ Poor HSI

Saaz	2008	2018
EBC 7.5	4.0%	3.7%
ASBC	3.6%	3.1%
HSI	0.340	0.380

7.5-14% alpha loss over 10 years

Cold storage

Perle	1999	2016
EBC 7.5	10.0%	8.0%
ASBC	-	6.0%
HSI	-	0.525
Oil	-	1.45 ml/100 g

20% alpha loss over 17 years

Outlier – Celeia/Styrian Golding

	2013	2014	2015	2016	2017	2018	2019	2020	
Average	Average 0,356 0,376		0,308	0,424	0,385	0,425	0,348	0,327	
Median	ian 0,341 0,305		0,454 0,378		0,409	0,350	0,322		
Minimum	linimum 0,33		0,272	0,299	0,310	0,311	0,320	0,295	
Maximum		0,479 0,350 0,		0,540	0,520	0,575	0,370	0,349	
Number of samples	of 1 5 10		10	17 29		24	5	5	
		Average 2013-2020							

How can we use HSI for hop quality?

- Traditional HSI classification not valid for all hop varieties
- Quality of a hop variety can not be determined based on one measurement
- Two measurements are necessary for determining the age of a hop

Green that's Gold

Basics of Sensory, Methods, and Strategies for Selection

Sensory Elements of Selection

- Preparation Ahead of Time
 - Training your selection team
 - Establishing your target profile
- The Actual Selection
 - Scheduling
 - What to look for
 - Strategy
 - Methods of Evaluation
- How we select at Haas with Sensory Plus (and how it applies to you)

I WANT YOU... TO PICK THE BEST HOPS

Preparation Ahead of Time

- Training is Key!
 - Raw material sensory 'hits' differently than beer sensory
 - Ex. Myrcene is 30-60% of hop oil in whole cone/pellets but <1% of the residual hop oil in beer (below sensory threshold)
 - Whole Pellet and Hop Grind (ASBC Sensory-16)
 - An agreed upon sensory lexicon is a must!
 - Does every decision-maker understand what "intensely fruity" means?
 - Is "fruity" sufficiently descriptive to differentiate between quality lots?

CHECK THE STANDARDS IN FRONT OF YOU!!

Training Your Selection Team

Make sure you're all speaking the same language!

- Do you know what your brewer means when they describe Citra as, "the best, new vinyl shower curtains"?
- Choose terms that are common enough to be accessible, but specific enough to not be redundant – or choose an existing lexicon like 'Hopsessed,' ASBC Sensory-12, or DraughtLab
- Train with standards my 'floral' is not the same as yours!

This is a 'Dank'-Free zone

Validating Your Selection Team

Can your team discriminate and describe *consistently?*

Cascade vs Sabro (easy)

Cascade vs Mosaic (easy)

Cascade vs Citra (easy)

Cascade vs CTZ (easyish)

Cascade vs Centennial (slightly harder)

Centennial vs Citra

CTZ vs Citra

Citra vs Mosaic

Citra lot 1 vs Citra lot 2 (etc...)

Setting a Target

- Know your brand and required volumes
- Define your expectations for quality *objectively*
- How you use the hop impacts how narrowly selected lots must comply with the target

OTHE SELECTION

Visual Quality

- Don't judge a hop by its cover
- "Green is Gold" is too simplistic

 many varieties like Ekuanot
 and Comet are yellow as are
 hops from Oregon
- Evaluate: Mold, mildew, windburn, and the color of the lupulin

Know what you're looking at...

Know what you're looking at...

Idaho Citra – Sample Arrived Sept 15 Intensity: 9/10 Profile: Intense Black Currant (Catty), Strong Lime Zest, Grapefruit, Peach Fuzz and Flesh,

<u>Oregon Citra –</u> Sample Arrived Sept 12 Intensity: 10/10 Profile: Intense Lime Flesh, Subtle Grapefruit, Moderate Green Mango, Passion Fruit Washington Citra – Sample Arrived Sept 15 Intensity: 7/10

Profile: Strong Citrus Zest, Black Currant (Catty), Moderate Sweaty Tropical Fruits, Fresh Pine Needles

<u>Washington Citra –</u> Sample Arrived Sept 18 Intensity: 8/10 Profile: Intense Sweet Fruit, Ripe Melon, Stone fruits, Moderate Lemon/Orange Zest, Slight Grassy

Sweet Caroliiiinnnee.... (ba ba ba)

- After looking, you do actually need to *reach out* and *touch* the cones.
- Use the whole sample cup!
- Gently press the cones into the table – they should be slightly springy
- But also, you need to rub the hops...

Physical Quality

- Listen too your hands
- Slowly grind a palm's full of hops back-and-forth
- How spongy, hard, silky, or dusty do the hops feel?
- Rubbing more vigorously, do they turn to dust or do they roll up like wet rags?
- Hops should put up some resistance but *eventually* (after 4-5 rubs) yield and pull apart

Sensory Quality

- Look for what you need, not what you want
- Gentle sniffs on the whole and slightly ground cone gives a good evaluation for intensity and presence of macro defects
- A deeper evaluation of fully ground cones will reveal the nuances and overall character
- But! Hop and beer sensory are not equivalent

Beer – Hop Sensory Correlations

-		OHAI	Floral	Citrus	Sweet Fruit	Green Fruit	Berry & Currant	Cream Caramel	Woody Aromatic	Menthol	Herbal	Spicy	Green- Grassy	Vegetal	Liking
	OHAI	0.85	-0.25	<mark>0.71</mark>	<mark>0.78</mark>	-0.15	0.71	0.17	0.10	-0.02	-0.22	0.58	0.15	0.83	0.77
	Floral		0.36	0.33	0.09	0.44	-0.35	0.02	-0.33	0.34	-0.13	-0.39	0.39	-0.53	0.22
ŝ	Citrus			<mark>0.42</mark>	<mark>0.90</mark>	0.66	0.27	-0.19	0.29	-0.12	-0.02	0.42	0.26	0.62	0.73
ď	Sweet Fruit				<mark>0.55</mark>	0.35	<mark>0.85</mark>	0.30	0.04	0.32	0.04	0.45	0.26	<mark>0.64</mark>	0.73
Q	Green Fruit					0.50	0.26	0.07	-0.51	0.23	0.14	-0.26	0.20	-0.11	-0.11
<u> </u>	Berry & Currant						0.77	0.32	0.19	0.34	0.25	0.55	0.04	<mark>0.80</mark>	0.45
	Cream Caramel							0.55	0.57	0.58	0.52	0.14	0.72	0.33	0.44
	Woody Aromatic								0.67	0.43	0.46	0.37	0.23	0.36	0.26
	Menthol									0.45	0.71	0.32	0.48	0.14	0.35
	Herbal										0.21	0.48	0.42	0.08	-0.09
	Spicy											0.55	0.22	0.55	0.47
	Green-Grassy												0.04	0.08	0.51
	Vegetal													0.41	0.49
	Liking														0.87

REED

*For a competent discussion on this matter, come to Dr. Marshall Ligare's presentation tomorrow during Ingredients II

Collect Data!

- Choose a system and stick with it year-over-year
- As you evaluate, focus on your TARGETS rather than your interest/liking
- Going with the firey-est Mosaic in the whole cone will only lead to vegetal heart-ache in the pellets
- Using blinded data helps you overcome the 'loudest voice in the room'

Just do it!

But why collect all these data?

65

NASTER BREWER ESTE 1887 TOSOCIATION OF THE AMERICOS

Customers selected (blue) six of the 15 lots, including half of the flagged lots.

New bale samples are cut for SensoryPLUS rescreening based on initial sensory.

Technical specifications are provided by QC.

In the end

- There are a lot of options regarding how to approach a selection scenario –
- Experience is hugely important, but having a strong plan when you're new will give you a leg-up
- Consistent training and retraining are **KEY!**
- It doesn't take a lot of investment (relatively speaking) to get huge dividends in improved quality

We literally want you to be satisfied with your hops

70

Centennial is typically described as having a "strong citrus and fruity" character with notes of "Orange," "Lime," "Cherry," "Floral," and "Pine Resin."

		Today's
	Typical	Sample
Alpha %	9.5 - 11.5	9.48
Beta %	3.4 - 4.5	3.4
HSI	0.275 - 0.31	0.318
Total Oil (mL/100g)	1.5 - 2.5	1.8

72

Cashmere is typically described as having a "strong citrus and sweet fruit" character with notes of "Lemon," "Lime," "Ripe Melon," "Stone Fruit," and "Thyme."

		Today's
	Typical	Sample
Alpha %	7.7 - 9.1	6.89
Beta %	3.5 - 4.5	6.61
HSI	0.25 - 0.265	0.274
Total Oil (mL/100g)	1.2 - 1.4	0.8

Citra is typically described as having a "strong citrus and tropical" character with notes of "Grapefruit," "Lime," "Mango," "Passionfruit," "Generic Floral" and "Sweaty" or "Catty"

		Today's
	Typical	Sample
Alpha %	11.0 -13.0	14.1
Beta %	3.4 - 4.5	3.69
HSI	0.25 - 0.281	0.327
Total Oil (mL/100g)	2.2-2.8	2.5

HBC 586 is typically described as having a "tropical, citrus, and slightly spicy" character with notes of "Mango," "Guava" "Lychee," and "Mandarin Orange," "Berry Jam," and "Fresh-Cut Serrano Peppers."

		Today's
	Typical	Sample
Alpha %	12.0 - 13.0	11.46
Beta %	7.5 - 8.5	7.29
HSI	0.26 - 0.28	0.318
Total Oil		
(mL/100g)	1.2 - 2.5	1.8

75

HBC 586

