

Exogenous Gibberellic Acid: Some Observations on The Mass Balance Barley-Malt-Beer in Terms of Fermentable Extract

A-31

Ramon Huerta-Zurita, Maria Guadalupe Herrera-Hernandez, and Miguel Angel Avila-Perches.

INIFAP, Mexico.

INTRODUCTION

During germination, barley grain synthesizes different enzymes that contribute to endosperm degradation. Most of these enzymes are triggered by gibberellic acid (GA₃), a hormone naturally released by the germinating embryo [1,2]. Early studies showed that the exogenous addition of gibberellin stimulated barley germination and amylase synthesis. As a consequence, several experiments with GA₃ were carried out during the second half of the 20th century, and the use of this hormone in the malting industry increased substantially. Nowadays, several malt-houses, when allowed by costumers, add small amounts of GA_3 at initial stages of malting in order to accelerate germination and, additionally, improve malt quality in terms of malt extract, soluble protein, and fermentability [1,2,3]. Due to the considerable increase of malt soluble protein when GA₃ is used, as well as some contrasting reports on malting loses and fermentability, the objective of this study was to evaluate the mass balance barley-malt-beer in terms of fermentable matter.

When Control and GA₃ malts were compared from a mass balance perspective (Table 3), it was observed that GA₃ malts (at 0.25 mg kg⁻¹ of barley) have more fermentable matter (RDF of MSS) than control malts as it has been broadly reported. However, the higher level of GA₃ showed the opposite which was mainly due to their significantly lower RDF values. The reduction of RDF was related to the increase of maltotriose, a partly fermentable carbohydrate, which resulted in the reduction of the ratio FC+/FC [(maltose+glucose+fructose) / (maltose+glucose+fructose+maltotriose)] in wort; also, this ratio was lower when GA_3 was used at 0.50 mg kg⁻¹ of barley. The higher amounts of maltotriose could be linked to the excess of AA that is synthesized when GA₃ is used (Table 2). It is possible that this enzyme, during the 1-hr mashing time for HWE, generates more substrate than beta amylase can digest in the set time.

2022 ASBC Meeting

BREWING SUMMIT 2022

Providence, Rhode Island August 14–16

MATERIALS AND METHODS

- Two two-rowed malting barley varieties with different quality (Table 1). Only plump kernels were malted (i.e. those retained on sieve 6/64 x 3/4 in.). Both skinned and broken kernels were removed before malting.
- Two GA₃ doses (0.25 and 0.50 mg kg⁻¹ of barley) added during steeping. Each GA₃ treatment was malted separately with Control samples included.
- 45% germination moisture. 120h steeping + germination time.
- Mass balance was first performed among malts (with no malting loses considered, Table 3), and from barley to malt to fermented wort (Table 4).

Table 1. Malt quality of malting barley samples used in GA ₃ experiments.				
Parameter ¹	AC Metcalfe	Prunella		
ML (% d.b.)	11.09±0.37	8.19±0.94		
TP (% d.b.)	10.97±0.23	11.20±0.29		
HWE (% d.b.)	80.56±0.14	78.24±0.60		
DP (°ASBC d.b.)	136±7.71	81±3.45		
AA (D.U. _{20°C} d.b.)	122±7.78	43±5.04		
WV (cp.)	1.48±0.02	1.45±0.03		
SP (% d.b.)	4.60±0.09	3.17±0.25		
FAN (mg L ⁻¹)	139±15.93	80±13.64		
KI (% S/T d.b.)	41.91±1.51	28.38±2.78		
RDF (%)	82.82±0.90	85.42±0.71		
¹ ML: malting loses; d.b.: dry basis; TP: malt total protein; HWE: hot water extract; DP: diastatic power; AA: Alpha amylase; WV: wort viscosity; SP:				

Table 3. Mass balance (in kg, from malt to fermented wort) between checks and GA₃ malts according malt quality values from Table 2. The analysis considers 1000kg of malt with 5% grain moisture. Each malting set was carried out in different dates.

Variable ¹	Malting set 1		Malting set 2	
	Check	GA ₃ 0.25	Check	GA ₃ 0.50
Malt weight	1000	1000	1000	1000
Malt dry matter	950	950	950	950
MSS (i.e. extract)	751.93	761.71	756.68	768.17
SP	35.53	41.90	38.29	42.18
RDF of MSS	637.04	642.58	631.98	624.14
MSS-SP	716.40	719.81	718.40	725.99
RDF of (MSS-SP)	606.93	607.23	600.01	589.87

SS: malt soluble solids after mashing; SP: weight of protein weight in malt soluble solids; RDF of MSS: weight of fermentable matter in malt soluble solids; MSS-SP: malt soluble solids – soluble protein (i.e. solids that can already, and partially, be converted into ethanol); RDF of (MSS-SP) mentable matter of nonprotein malt soluble solids (assuming same RDF).

On the other hand, if malting loses are included in mass balance comparisons, GA₃ malts (at 0.25 mg kg⁻¹ of barley) still show higher fermentable matter (RDF of MSS) than Control malts. However, now both GA₃ treatments have less nonprotein fermentable matter, or 'RDF of (MSS-SP)', than Control malts (Table 4). This is an important outcome since the nonprotein fraction of malt extract (with >99%) carbohydrates) is the one that provides the substrate for ethanol synthesis. The variable 'RDF of (MSS-SP)' was calculated considering the same RDF value observed for MSS. This assumption is

RESULTS AND DISCUSSION

soluble protein; FAN: free amino nitrogen; KI: Kolbach index; RDF: real degree of fermentation

As expected, GA₃ has significant effects on malt quality (Table 2) when it is used at low concentrations (i.e. 0.25 mg kg⁻¹). The use of this hormone in higher amounts, as it was pointed out in early studies, has no considerable benefits. Moreover, some parameters such as malting loses, alpha amylase, and wort color show disproportionate increases.

> Table 2. Combined malt quality of two two-rowed malting barley samples as affected by two GA₃ treatments.

Parameter	Malting set 1		Malting set 2		
	Control	GA ₃ 0.25	Control	GA ₃ 0.50	
ML (% d.b.)	9.08a	9.59b	10.20a	11.22b	
TP (% d.b.)	11.24a	11.35a	10.93a	10.85a	
HWE (% d.b.)	79.15a	80.18b	79.65a	80.86b	
DP (°ASBC d.b.)	110a	115a	107a	111b	
AA (D.U. _{20°C} d.b.)	81.8a	94.2b	82.7a	107.4b	
WV (cp.)	1.47a	1.48a	1.45a	1.55b	
WC (°SRM)	1.94a	2.38b	1.93a	3.09b	
SP (% d.b.)	3.74a	4.41b	4.03a	4.44b	
FAN (mg L ⁻¹)	98a	122b	122a	167b	
WBG (mg L ⁻¹)	237a	89b	131a	73b	
KI (% S/T d.b.)	33.3a	38.9b	36.9a	39.8b	
RDF (%)	84.7a	84.4a	83.5a	81.2b	
FC+/FC (%)	86.2a	85.1b	83.0a	81.5b	
	¹ ML: malting loses; d.b.: dry basis; TP: malt total protein; HWE: hot water extract; DP: diastatic power; AA: Alpha amylase; WV: wort viscosity; WC: wort color; SP: soluble protein; EAN: free amino pitrogen; WBG: beta glucan in wort; KI: Kolbach index; RDE: real degree of fermentation; EC+/EC:				

based on the fact that the weight of FAN utilized during fermentation is <0.2% of MSS.

Table 4. Mass balance (in kg, from barley to fermented wort) between checks and GA₃ malts according malt quality values from Table 2. The analysis considers 1000kg of barley with 12% grain moisture. Each malting set was carried out in different dates.

Variable	Malting set 1		Malting set 2	
	Check	GA ₃ 0.25	Check	GA ₃ 0.50
Barley weight	1000	1000	1000	1000
Barley dry matter	880	880	880	880
Malting loses	79.90	84.39	89.76	98.74
Malt dry matter	800.10	795.61	790.24	781.26
MSS (i.e. extract)	633.28	637.92	629.43	631.73
SP	29.92	35.09	31.85	34.69
RDF of MSS	536.51	538.15	525.70	513.28
MSS-SP	603.36	602.83	597.58	597.04
RDF of (MSS-SP)	511.17	508.55	499.10	485.10
¹ MSS: malt soluble solids after mashing; SP: weight of protein in malt soluble solids; RDF of MSS: weight of fermentable matter in malt soluble solids; MSS-SP; malt soluble solids – soluble protein (i.e. solids that can already, and partially, be converted into ethanol); RDF of				

ilds – soluble protein (i.e. solids that can already, and partially, be converted into ethanol), RDF of SS-SP): fermentable matter of nonprotein malt soluble solids (assuming same RDF)

CONCLUSIONS

The use of GA₃ during malting of barley still provides some advantages such as the increase of FAN or the reduction of WBG. Although GA₃ increases HWE, the increase of SP and the reduction of RDF result in lower nonprotein fractions in wort when compared to Control malts. Considering that the major advantage of GA_3 is accelerating barley germination, these findings suggest the study of partly-modified malts (which is undergoing), to understand the real advantages of exogenous GA₃ in

SP: soluble protein; FAN: free amino nitrogen; WBG: beta glucan in wort; KI: Kolbach index; RDF: real degree of fermentation; FC+/FC: (maltose+fructose+glucose)/(maltose+fructose+glucose+maltotriose).

terms of fermentable extract, from barley to beer.

REFERENCES

[1] Briggs, D.E. Malts and malting. Blackie Academic and Professional. London, UK, 1998. [2] Briggs, D.E. Malt modification – A century of evolving views. J. Inst. Brew. 2002, 108(4), 395-405. [3] MacLeod, L. Malting. In: Corke, H.; Walker, C.E. Editors. Encyclopedia of grain science. Elsevier LTD, 2004.

CONTACT INFORMATION

Ramon Huerta-Zurita INIFAP, Mexico. huerta.ramon@inifap.gob.mx rhzurita@yahoo.com.mx

Forestales, Agrícolas y Pecuarias